首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High field 2-D-1H-NMR techniques permitted the assignment of all non-exchangeable protons of the unnatural deoxyribonucleotides alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)]. 1-D and 2-D NOESY experiments show strong H6H8-H4' dipolar interactions for all nucleotides in both sequences. These data, together with COSY and J-resolved spectra, indicate that these two alpha-oligomers adopt 3'-exo conformations of the sugar moieties in solution with anti conformations of the glycosyl linkages. Both 1H-NMR data, and hypochromocity comparison of alpha-CATGCG and beta-CATGCG, demonstrate a higher degree of base stacking in the case of the alpha-sequence. The UV hyperchromicity at 260 nm, and symmetry considerations in the imino proton NMR experiments reveal antiparallel self-recognition and duplex annealing at positions 1-4 for alpha-[d(CATGCG)] and positions 3-6 for alpha-[d(CGCATG)]. The temperature variation of the imino proton NMR signals suggests that the hydrogen bonding in self-recognition is comparable in strength with that in a beta-DNA duplex, and NOE data are in accord with Watson-Crick rather than Hoogsteen base pairing.  相似文献   

2.
Summary A conformational analysis in water and DMSO of two tachykinin family peptides (scyliorhinin I (ScyI) and scyliorhinin II (ScyII)) was carried out by 1D and 2D NMR (DQF-COSY, TOCSY, HMQC, HMBC, NOESY and ROESY) and molecular dynamics calculation methods. In DMSO, two groups of conformations (major and minor) were obtained for both peptides based on the experimental data. The conformations proposed for ScyI represent a folded structure, which shows certain similarities to the structures reported for other NK-1 and NK-2 tachykinin agonists. In water ScyII displays a flexible, extended structure, whereas in DMSO the structure is more compact and, in the fragment from the centre to the C-terminus, several β-turns may be present.  相似文献   

3.
The solution structure of a new recombinant RGD-hirudin, which has the activities of anti-thrombin and anti-platelet aggregation, was determined by (1)H nuclear magnetic resonance spectroscopy and compared with the conformations of recombinant wild-type hirudin and hirudin (variant 2, Lys47) of the hirudin thrombin complex. On the basis of total 1284 distance and dihedral angle constraints derived from a series of NMR spectra, 20 conformers were computed with ARIA/CNS programs. The structure of residues 3-30 and 37-48 form a molecular core with two antiparallel beta-sheets as the other two hirudins. However, significant differences were found in the surface electrostatic charge distributions among the three hirudins, especially in the RGD segment of recombinant RGD-hirudin. This difference may be greatly beneficial to its additional function of anti-platelet aggregation. The difference in extended C-terminal makes its both ionic and hydrophobic interactions with the fibrinogen recognition exosite of thrombin more effective.  相似文献   

4.
A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (<10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (>10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain–side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492–507, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
A conformational analysis in water and DMSO of two tachykinin family peptides (scyliorhinin I (ScyI) and scyliorhinin II (ScyII)) was carried out by 1D and 2D NMR (DQF-COSY, TOCSY, HMQC, HMBC, NOESY and ROESY) and molecular dynamics calculation methods. In DMSO, two groups of conformations (major and minor) were obtained for both peptides based on the experimental data. The conformations proposed for ScyI represent a folded structure, which shows certain similarities to the structures reported for other NK-1 and NK-2 tachykinin agonists. In water ScyII displays a flexible, extended structure, whereas in DMSO the structure is more compact and, in the fragment from the centre to the C-terminus, several -turns may be present.  相似文献   

6.
The conformational analysis of two synthetic octapeptides, Boc-Leu-Val-Val-D-Pro-L-Ala-Leu-Val-Val-OMe (1) and Boc-Leu-Val-Val-D-Pro-D-Ala-Leu-Val-Val-OMe (2) has been carried out in order to investigate the effect of beta-turn stereochemistry on designed beta-hairpin structures. Five hundred megahertz (1)H NMR studies establish that both peptides 1 and 2 adopt predominantly beta-hairpin conformations in methanol solution. Specific nuclear Overhauser effects provide evidence for a type II' beta-turn conformation for the D-Pro-L-Ala segment in 1, while the NMR data suggest that the type I' D-Pro-D-Ala beta-turn conformation predominates in peptide 2. Evidence for a minor conformation in peptide 2, in slow exchange on the NMR time scale, is also presented. Interstrand registry is demonstrated in both peptides 1 and 2. The crystal structure of 1 reveals two independent molecules in the crystallographic asymmetric unit, both of which adopt beta-hairpin conformations nucleated by D-Pro-L-Ala type II' beta-turns and are stabilized by three cross-strand hydrogen bonds. CD spectra for peptides 1 and 2 show marked differences, presumably as a consequence of the superposition of spectral bands arising from both beta-turn and beta-strand conformations.  相似文献   

7.
The conformation of the antibiotic echinomycin in DMSO solution has been determined from two-dimensional NMR and distance geometry calculation with distance constraints. Five converged conformations were calculated with NOE distance constraints followed by restraint energy minimization.  相似文献   

8.
Carulla N  Woodward C  Barany G 《Biochemistry》2000,39(27):7927-7937
A new strategy for the design and construction of peptide fragments that can achieve defined, nativelike secondary structure is presented. The strategy is based upon the hypothesis that 'core elements' of a protein, synthesized in a single polypeptide molecule, will favor nativelike structure, and that by incorporating a cross-link, nativelike core structure will dominate the ensemble as the more extended conformations are excluded. 'Core elements' are the elements of packed secondary structure that contain the slowest exchanging backbone amide protons in the native protein. The 'core elements' in bovine pancreatic trypsin inhibitor (BPTI) are the two long strands of antiparallel beta-sheet (residues 18-24 and 29-35) and the small beta-bridge (residues 43-44). To test the design strategy, we synthesized an 'oxidized core module', which contains the antiparallel strands connected by a modified reverse turn (A27 replaced by D), a natural disulfide cross-link at the open end of the hairpin, and N- and C-termini blocking groups. A peptide with identical sequence but lacking the disulfide cross-link at the open end was used as the 'reduced core module' control. The conformational behavior of both peptides was examined using (1)H NMR spectroscopy. Chemical shift dispersion, chemical shift deviation from random coil values, sequential and long-range NOEs, and H/D amide exchange rates were compared for the two peptides. We conclude that the ensemble of oxidized and reduced core module conformations samples both nativelike 4:4 and non-native 3:5 beta-hairpin structure, and that the oxidized module samples nativelike structure for a greater fraction of the time than the reduced module.  相似文献   

9.
A combined 1H-NMR and molecular mechanics study of [Cpp1, Sar7]AVP was performed in order to select the most probable conformations in DMSO solutions. The NMR constraints obtained were employed in the selection of starting conformations of the cyclic moiety of the analog. In particular, the diminished accessibility of the Asn5 NH proton to solvent and the close contact between Cpp1 and Cys6 C alpha H protons suggests a beta-turn conformation at the Phe3-Gln4 residues. Energy minimization was carried out both in the ECEPP/2 (rigid-valence geometry) and in the AMBER (flexible-valence geometry) force fields. Comparison of the experimental and calculated values of NMR characteristics has revealed that conformations containing type I, II, and III beta-turns at the Phe3-Gln4 residues are in reasonable agreement with the experimental data, with a dynamic equilibrium between the beta I (beta III) and beta II type structures of the cyclic part being the most probable. All of these conformations prefer the negative chirality of the disulfide bridge (theta 3 approximately -90 degrees). Five representative conformations were chosen for the acyclic tail: one with a beta I, one with a beta II'-turn at the Sar7-Arg8 residues, two extended-type conformations, and a conformation with a gamma-turn at Sar7. Because only high-energy extended conformations were in agreement with NMR data, it was concluded that the acyclic tail has considerable conformational flexibility in solution. The conformations obtained are discussed in terms of the structure-function relationship of the neurohypophyseal hormone analogs.  相似文献   

10.
The structural features related to the biologic activities of a potent, response-selective decapeptide agonist of human C5a, YSFKPMPLaR (C5a65-74, Y65, F67, P69, P71, D-Ala73), were identified by NMR analysis in H2O, DMSO and TFE. This investigation showed that the KPM residues in H2O and the SFKPM residues in DMSO exhibited an extended backbone conformation, whereas a twisted conformation was found in this region in TFE. In H2O, the C-terminal region (PLaR) adopted a distorted type II beta-turn or a type II/V beta-turn. In the type IIN beta-turn, Leu72 exhibited a conformation typical of a type II beta-turn, whereas D-Ala73 exhibited a conformation characteristic of a type V beta-turn. Furthermore, a gamma-turn involving residues LaR overlapped with the type II/V beta-turn. In DMSO, the C-terminal region had the analogous turn-like motif (type II/V beta-turn overlapping with gamma-turn) found in H2O. In TFE, no beta-turn motifs were formed by the PLaR residues. These turn-like motifs in the C-terminal region of the peptide in both H2O and DMSO were in agreement with the biologically important conformations predicted earlier by a structure-function analysis of a related panel of decapeptide analogs. The motifs determined by the NMR analysis of YSFKPMPLaR in H2O and DMSO may represent structural elements important for C5a agonist activity and thus can be used to design the next generation of C5a agonist, partial agonist and antagonist analogs.  相似文献   

11.
Conformation of the renin inhibitor peptide, Pro-His-Pro-Phe-His-Phe-Phe-Val-Tyr-Lys (RIP) has been studied in aqueous solution and in lipid bilayers using 500 MHz 1H NMR spectroscopy. Analysis of the NMR parameters indicates that in aqueous solution, RIP exists as a random coil. On incorporation into lipid bilayers, the peptide adopts a rigid and well defined conformation. The N-terminal end is stabilized by the hydrophobic environment of the lipid bilayer. The C-terminal end is located near the lipid-water interface and attains rigidity due to interaction with the phosphate groups of lipids. The observations emphasize the role of environment in stabilizing significantly different conformations of RIP in three different media--D2O, DMSO and lipid bilayers.  相似文献   

12.
X L Zhang  M E Selsted  A Pardi 《Biochemistry》1992,31(46):11348-11356
Two-dimensional nuclear magnetic resonance spectroscopy has been used to make resonance assignments of the proton spectra of two defensin antimicrobial peptides, human neutrophil peptide HNP-1 and rabbit neutrophil peptide NP-2. The secondary structures of these peptides were determined from analysis of the proton-proton NOEs and from the positions of slowly exchanging amide protons. Both peptides contain a long stretch of a double-stranded antiparallel beta-sheet in a hairpin conformation that contains a beta-bulge, a short region of triple-stranded beta-sheet, and several tight turns. The NMR results clearly show that HNP-1 forms a dimer or higher order aggregate in solution and that Pro8 exists as a cis peptide bond. The NMR data on these peptides are compared with NMR data for a homologous peptide NP-5 [Bach, A. C., Selsted, M. E., & Pardi, A. (1987) Biochemistry 26, 4389-4397]. Analysis of the conformation-dependent proton chemical shifts shows that it is not possible to confidently judge the structural similarity of the three defensins from chemical shift data alone. However, comparison of the 3JHN alpha coupling constants in NP-2 and NP-5 indicates that the backbone conformations for these peptides are very similar. A more detailed comparison of the solution conformations of the defensins peptides is made in the following paper in this issue where the NMR data are used as input for distance geometry and molecular dynamics calculations to determine the three-dimensional structures of HNP-1 and NP-2.  相似文献   

13.
The pore dimensions of gramicidin A.   总被引:28,自引:13,他引:15  
The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion conductance properties and dependence of pore dimensions on the environment.  相似文献   

14.
BetaCore is a designed approximately 50-residue protein in which two BPTI-derived core modules, CM I and CM II, are connected by a 22-atom cross-link. At low temperature and pH 3, homo- and heteronuclear NMR data report a dominant folded ('f') conformation with well-dispersed chemical shifts, i, i+1 periodicity, numerous long-range NOEs, and slowed amide hydrogen isotope exchange patterns that is a four-stranded antiparallel beta-sheet with nonsymmetrical and specific association of CM I and CM II. BetaCore 'f' conformations undergo reversible, global, moderately cooperative, non-two-state thermal transitions to an equilibrium ensemble of unfolded 'u' conformations. There is a significant energy barrier between 'f' and 'u' conformations. This is the first designed four-stranded antiparallel beta-sheet that folds in water.  相似文献   

15.
The three-dimensional structure of native SHL-I, a lectin from the venom of the Chinese bird spider Selenocosmia huwena, has been determined from two-dimensional 1H NMR spectroscopy recorded at 500 and 600 MHz. The best 10 structures have NOE violation <0.3 Å, dihedral violation <2 deg, and average root-mean-square differences of 0.85 + 0.06 Å over backbone atoms. The structure consists of a three-stranded antiparallel β-sheet and three turns. The three disulfide bridges and three-stranded antiparallel β-sheet form a inhibitor cystine knot motif which is adopted by several other small proteins, such as huwentoxin-I, ω-conotoxin, and gurmarin. The C-terminal fragment from Leu28 to Trp32 adopts two sets of conformations corresponding to the cis and trans conformations of Pro31. The structure of SHL-I also has high similarity with that of the N-terminus of hevein, a lectin from rubber-tree latex.  相似文献   

16.
The solution conformation of O-beta-D-galactopyranosyl-(1----4)-O-beta-D-xylopyranosyl-(1----0)-L-ser ine (GXS), a carbohydrate-protein linkage region fragment from connective tissue proteoglycans, was investigated by two-dimensional NMR spectroscopy and molecular modeling calculations. Specifically, the 1H and 13C resonances were assigned by 2D-COSY and by 1H-13C heteronuclear correlation spectroscopy methods. 2D-NOESY was used to generate distance constraints between the galactose and xylose and between the xylose and serine residues. The 1H vicinal coupling constants for the sugars and the serine were also determined. A general molecular modeling methodology suitable for complex carbohydrates was developed. This methodology employed molecular dynamics and energy minimization procedures together with the application of inter-residue spatial constraints across the linkages derived from 2D-NOESY. The first step in this methodology is the generation of a wide variety of starting conformations that span the (phi, psi) space for each linkage. In the present study, nine such conformations were constructed for each linkage using the torsion angles phi and psi corresponding to the gauche+, gauche-, and trans configurations across each of the two bonds constituting the linkage. These conformations were subjected to a combined molecular dynamics/energy minimization refinement using the NOESY derived constraints as pseudoenergy functions. Families of conformations for the whole molecule were then constructed from the structures derived for each linkage. Characterization of GXS using this methodology identified a single family of conformations that are consistent with the solution phase NMR data on this molecule.  相似文献   

17.
A repeated non-coding DNA sequence d(TTAGGG)n is present in the telomeric ends of all human chromosomes. These repeats can adopt multiple inter and intramolecular non-B-DNA conformations that may play an important role in biological processes. Two intramolecular structures of the telomeric oligonucleotide dAGGG(TTAGGG)3, antiparallel and parallel, have been solved by NMR and X-ray crystallography. In both structures, the telomeric sequence adopts an intramolecular quadruplex structure that is stabilized by G-4 quartets, but the ways in which the sequence folds into the quadruplex are different. The folds of the human telomeric DNA were described as an anti-parallel basket-type and a parallel propeller-type. We applied 125I-radioprobing to determine the conformation of the telomeric quadruplex in solution, in the presence of either Na+ or K+ ions. The probability of DNA breaks caused by decay of 125I is inversely related to the distance between the radionuclide and the sugar unit of the DNA backbone; hence, the conformation of the DNA backbone can be deduced from the distribution of breaks. The probability of breaks measured in the presence of Na+ and K+ were compared with the distances in basket-type and propeller-type quadruplexes obtained from the NMR and crystal structures. Our radioprobing data demonstrate that the antiparallel conformation was present in solution in the presence of both K+ and Na+. The preferable conformation in the Na+-containing solution was the basket-type antiparallel quadruplex whereas the presence of K+ favored the chair-type antiparallel quadruplex. Thus, we believe that the two antiparallel and the parallel conformations may coexist in solution, and that their relative proportion is determined by the type and concentration of ions.  相似文献   

18.
Tachystatin B is an antimicrobial and a chitin-binding peptide isolated from the Japanese horseshoe crab (Tachypleus tridentatus) consisting of two isopeptides called tachystatin B1 and B2. We have determined their solution structures using NMR experiments and distance geometry calculations. The 20 best converged structures of tachystatin B1 and B2 exhibited root mean square deviations of 0.46 and 0.49 A, respectively, for the backbone atoms in Cys(4)-Arg(40). Both structures have identical conformations, and they contain a short antiparallel beta-sheet with an inhibitory cystine-knot (ICK) motif that is distributed widely in the antagonists for voltage-gated ion channels, although tachystatin B does not have neurotoxic activity. The structural homology search provided several peptides with structures similar to that of tachystatin B. However, most of them have the advanced functions such as insecticidal activity, suggesting that tachystatin B may be a kind of ancestor of antimicrobial peptide in the molecular evolutionary history. Tachystatin B also displays a significant structural similarity to tachystatin A, which is member of the tachystatin family. The structural comparison of both tachystatins indicated that Tyr(14) and Arg(17) in the long loop between the first and second strands might be the essential residues for binding to chitin.  相似文献   

19.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

20.
Assignment of the 1H and 31P NMR spectra of a tandem G.A mismatched base pair decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. Unusual downfield 31P resonances have been assigned by a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum to be associated with the phosphates on the 5'- and 3'-sides of the mismatched guanosine residue. JH3'-P coupling constants for each of the phosphates of the decamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. The two most downfield-shifted 31P resonances each appear to consist of two overlapping signals that can be resolved into two distinct doublets with different coupling constants in the J-resolved spectrum. This as well as the temperature dependence of the 31P spectra demonstrates that two distinct conformations exist at lower temperatures. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. A linear correlation between 31P chemical shifts and the measured coupling constants is quite good (only when the larger set of coupling constants of the two most downfield 31P signals is included). The 31P chemical shifts as well as the measured coupling constants tend to follow the positional variation seen in other duplexes of interior phosphates resonating more upfield than terminal residues and of interior phosphates exhibiting smaller coupling constants; however, this pattern is disrupted at the site of the mismatch. Modeling and initial NOESY distance restrained molecular mechanics energy minimization and restrained molecular dynamics support previous observations that the mismatched guanine and adenine bases are both in anti conformations. Most significantly, the epsilon backbone torsional angle variaions calculated from the NOESY distance restrained structures are in agreement with both the crystal structure values and the measured JH3'-P coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号