首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A single locus model of the interaction between natural selection and artificial selection for a quantitative character in a finite population, assuming heterozygote superiority in natural fitness but additive action on the character, has been studied using transition probability matrices.If natural selection is strong enough to create a selection plateau in which genetic variance declines relatively slowly, then the total response to artificial selection prior to the plateau will be much less than that expected in the absence of natural selection, and the half-life of response will be shorter. Such a plateau is likely to have a large proportion, if not all, of the original genetic variance still present. In selection programmes using laboratory animals, it seems likely that the homozygote favoured by artificial selection must be very unfit before such a plateau will occur. A significant decrease in population fitness as a result of artificial selection does not necessarily imply that the metric character is an important adaptive character.These implications of this model of natural selection are very similar to those derived by James (1962) for the optimum model of natural selection. In fact, there seems to be no aspect of the observable response to artificial selection that would enable anyone to distinguish between these two models of natural selection.  相似文献   

2.
Polygenic sex determination (PSD) is relatively rare and theoretically evolutionary unstable, yet has been reported across a range of taxa. Evidence for multilocus PSD is provided by (i) large between‐family variance in sex ratio, (ii) paternal and maternal effects on family sex ratio and (iii) response to selection for family sex ratio. This study tests the polygenic hypothesis of sex determination in the harpacticoid copepod Tigriopus californicus using the criterion of response to selection. We report the first multigenerational quantitative evidence that clutch sex ratio responds to artificial selection in both directions (selection for male‐ and female‐biased families) and in multiple populations of T. californicus. In the five of six lines that showed a response to selection, realized heritability estimated by multigenerational analysis ranged from 0.24 to 0.58. Divergence of clutch sex ratio between selection lines is rapid, with response to selection detectable within the first four generations of selection.  相似文献   

3.
Summary The effect of t generations of reverse selection after t generations of forward selection can be described by expressing the change in the metric mean resulting from reverse selection (R) interms ofthe change in the metric mean due to the previous forward selection (x). An additive model of artificial selection in a population of effective size N with no natural selection has been considered.If reverse selection is continued for as many generations as the previous forward selection (t=t), then the ratio R/x equals 1 – F where F is the inbreeding coefficient for a neutral locus at generation t and is estimated as [1–(1–1/2N)t]. The result of a single generation of reverse selection (t=1) following t generations of forward selection can be described in terms of the ratio NR1/Dx where R1 is the response to the first generation of reverse selection. The value of NR1/x is expected to be (1–F) /2F.For any period of reverse selection following any period of forward selection, the value of R/x never exceeds t /t, and tends to decrease exponentially from this value as t increases.  相似文献   

4.
Medaka Oryzias latipes has several geographically and genetically distinct populations. We examined temperature acclimation response in various medaka cell lines derived from different populations. Measurement of cell growth at various temperatures suggested that 15°C was the permissive growth temperature in all cell lines from the Northern Japanese and East Korean populations, but not in those from the Southern Japanese population and medaka-related species Oryzias celebensis, which inhabits a tropical zone. RT-PCR for 102 temperature-responsive genes, previously reported in other species, revealed that the accumulated mRNA level of a gene encoding HSP47 was lower at 25°C than at 33°C, and vice versa for 12 genes including IκBα and Rab-1c, in OLHNI-1 cell line from the Northern Japanese population. Further analysis by real-time PCR demonstrated that the accumulated mRNA levels of IκBα and Rab-1c in OLHNI-1 and OLSOK-e7 cell lines from the East Korean population were increased when the culture temperature was shifted from 33 to 15°C, but not in OLHdrR-e3 cell line from the Southern Japanese population. Since IκBα and Rab-1c are related to the NFκB cascade and endoplasmic reticulum-to-Golgi transport, respectively, it is inferred that immune responses and intracellular transport are possibly critical to temperature adaptation for medaka. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.

Background

Ectocarpus siliculosus virus-1 (EsV-1) is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV) that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail.

Results

Analysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system.

Conclusion

Our results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system.  相似文献   

6.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

7.
Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.  相似文献   

8.
Summary One of two quantitative traits was selected and correlated response in the other trait was measured in each of 30 generations for models of additive genes and of complete dominance. Each trait was controlled by 48 loci with equal effects, segregating independently from frequencies of 0.5 in the initial generation. Intensity of selection regulated the number of offspring from randomly mating 24 males and 24 females each generation. Three each of genetic correlations between traits, intensities of selection, and amounts of environmental variation were simulated.In the additive model correlated responses of the unselected trait to selection of the primary trait agreed closely with responses expected from theoretical considerations. In the model of complete dominance, responses of genotypic means of the unselected trait to selection of the primary trait in opposite directions were quite symmetrical for the first few generations but became distinctly asymmetrical in later generations. With little selection, response was fairly linear but became distinctly curvilinear as intensity of selection increased and environmental variance decreased. Between 15th and 30th generations some gains in the correlated trait to the 15th generation were lost.Michigan Agricultural Experiment Station Journal Article 4847. Part of North Central Regional Project NC-2.  相似文献   

9.
Summary Effects of truncation selection of a primary trait upon genetic correlation between the primary trait and an unselected secondary trait were observed during 30 generations. Populations were 24 male and 24 female parents per generation randomly mated with replacement, the number of offspring set by intensity of selection. Each trait was controlled by genes with equal effects and complete dominance segregating independently from starting frequencies of 0.5 at each of 48 loci. Three levels each of genetic correlation, selection, and environmental variation were simulated.Genetic correlation decreased faster under more intense selection by lower than by upper truncation but behaved similarly in both by remaining near initial level when as many as one-half of the offspring were saved for parents. Truncation selection decreased genetic correlation in the offspring selected to be parents whether selection was by upper or lower truncation. Estimates of genetic correlation from covariances between phenotypes of parent and offspring were erratic for both directions of selection.Michigan Agricultural Experiment Station Journal Article4841. Part of North Central Regional Project NC-2.  相似文献   

10.
Summary Effects of truncation selection of a primary trait upon genetic correlation with a secondary trait were examined over 30 generations in genetic populations simulated by computer. Populations were 24 males and 24 females mated randomly with replacement; number of offspring was determined by intensity of selection. Each trait was controlled by 48 loci segregating independently, effects were equal at every locus, and gene frequency was arbitrarily set at 0.5 at each locus in the initial generation. All combinations of three genetic correlations, three intensities of selection, and three environmental variances were simulated. Gene action was additive. Genetic correlation was set by number of loci which affected both traits and was measured each generation as the product-moment correlation of genotypic values and estimated by two methods of combining phenotypic covariances between parent and offspring.Genetic correlations in each offspring generation remained consistently near initial correlations for all environmental variances when fraction of offspring saved as parents was as large as one-half. When the fraction of offspring saved was as small as one-fifth, genetic correlations decreased but most rapidly with heritability high and after the 15th generation of selection. Truncation selection caused genetic correlation to decrease in those offspring selected to become parents of the next generation. Amount of reduction depended on heritability of the selected trait rather than on degree of truncation selection. Estimates of genetic correlation from phenotypic covariances between parent and offspring fluctuated markedly from real correlations in the small populations simulated.Michigan Agricultural Experiment Station Journal Article 4836. Part of North Central Regional Project NC-2.  相似文献   

11.
When populations are exposed to novel conditions of growth, they often become adapted to a similar extent, and at the same time, evolve some degree of impairment in their original environment. They may also come to vary widely with respect to characters which are uncorrelated with fitness, as the result of chance genetic associations among the founders, when these are a small sample from a large and variable ancestral population. I report an experiment in which 240 replicate lines of the unicellular chlorophyte Chlamydomonas were derived from primarily photoautotrophic ancestors and cultured as heterotrophs in the dark. All adapted to the dark and were impaired in the light after several hundred generations of culture. They also displayed a wide range of colony morphologies that were uncorrelated with fitness. This incidental response to selection probably arose through random variation in the initial composition of the lines. The differences between closely related species or varieties may likewise arise, in similar circumstances, by sampling error rather than natural selection.  相似文献   

12.
The founder effect and response to artificial selection   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
In plant breeding, a large number of progenies that will be discarded later in the breeding process must be phenotyped and marker genotyped for conducting QTL analysis. In many cases, phenotypic preselection of lines could be useful. However, in QTL analyses even moderate preselection can have a significant effect on the power of QTL detection and estimation of effects of the target traits. In this study, we provide exact formulas for quantifying the change of allele frequencies within marker classes, expectations of marker contrasts and the variance of the marker contrasts under truncation selection, for the general case of two QTL affecting the target trait and a correlated trait. We focused on homozygous lines derived at random from biparental crosses. The effects of linkage between the marker and the QTL under selection as well as the effect of selection on a correlated trait can be quantified with the given formulas. Theoretical results clearly show that depending on the magnitude of QTL effects, high selection intensities can lead to a dramatic reduction in power of QTL detection and that approximations based on the infinitesimal model deviate substantially from exact solutions. The presented formulas are valuable for choosing appropriate selection intensity when performing QTL mapping experiments on the data on phenotypically preselected traits and enable the calculation and bias correction of the effects of QTL under selection. Application of our theory to experimental data revealed that selection-induced bias of QTL effects can be successfully corrected.  相似文献   

15.
How strong is phenotypic selection on quantitative traits in the wild? We reviewed the literature from 1984 through 1997 for studies that estimated the strength of linear and quadratic selection in terms of standardized selection gradients or differentials on natural variation in quantitative traits for field populations. We tabulated 63 published studies of 62 species that reported over 2,500 estimates of linear or quadratic selection. More than 80% of the estimates were for morphological traits; there is very little data for behavioral or physiological traits. Most published selection studies were unreplicated and had sample sizes below 135 individuals, resulting in low statistical power to detect selection of the magnitude typically reported for natural populations. The absolute values of linear selection gradients |beta| were exponentially distributed with an overall median of 0.16, suggesting that strong directional selection was uncommon. The values of |beta| for selection on morphological and on life-history/phenological traits were significantly different: on average, selection on morphology was stronger than selection on phenology/life history. Similarly, the values of |beta| for selection via aspects of survival, fecundity, and mating success were significantly different: on average, selection on mating success was stronger than on survival. Comparisons of estimated linear selection gradients and differentials suggest that indirect components of phenotypic selection were usually modest relative to direct components. The absolute values of quadratic selection gradients |gamma| were exponentially distributed with an overall median of only 0.10, suggesting that quadratic selection is typically quite weak. The distribution of gamma values was symmetric about 0, providing no evidence that stabilizing selection is stronger or more common than disruptive selection in nature.  相似文献   

16.
The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite this parameter's central importance to population genetic models, until recently we have known relatively little about the value of s in natural populations. With the development of molecular genetic techniques in the late 20th century and the sequencing technologies that followed, biologists are now able to identify genetic variants and directly relate them to organismal fitness. We reviewed the literature for published estimates of natural selection acting at the genetic level and found over 3000 estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially distributed, suggesting that the impact of selection at the genetic level is generally weak but can occasionally be quite strong. We used both nonparametric statistics and formal random‐effects meta‐analysis to determine how selection varies across biological and methodological categories. Selection was stronger when measured over shorter timescales, with the mean magnitude of s greatest for studies that measured selection within a single generation. Our analyses found conflicting trends when considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight key issues in the calculation, interpretation, and reporting of selection coefficients and provide recommendations for future research.  相似文献   

17.
18.
19.
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome‐wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population‐specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.  相似文献   

20.
Lendvai G  Levin DA 《Heredity》2003,90(4):336-342
Quantitative characters are often said to evolve rather slowly, taking many generations to exhibit appreciable differences among populations. We tested this notion experimentally by performing bi-directional selection on corolla diameter of plants from a wild population of Phlox drummondii for three generations. By monitoring flower size, tube length and stigma-anther proximity of flowers, we obtained the direct and indirect responses to selection, and calculated genetic correlations, realized and narrow sense heritabilities using offspring-mother regression. Realized heritability of flower size was high (0.83), whereas genetic correlations among traits were weak or not significant. The per-generation average of the response in corolla diameter was about 5%. We found that P. drummondii has a great capacity to respond rapidly to selection, and this capacity may be in part responsible for the observed high degree of differentiation within the species. We also concluded that rapid evolution of morphological floral traits is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号