首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digweed M  Sperling K 《DNA Repair》2004,3(8-9):1207-1217
Nijmegen breakage syndrome is a rare autosomal recessive genetic disease belonging to a group of disorders often called chromosome instability syndromes. In addition to a characteristic facial appearance and microcephaly, patients suffering from Nijmegen breakage syndrome have a range of symptoms including radiosensitivity, immunodeficiency, increased cancer risk and growth retardation. The underlying gene, NBS1, is located on human chromosome 8q21 and codes for a protein product termed nibrin, Nbs1 or p95. Over 90% of patients are homozygous for a founder mutation: a deletion of five base pairs which leads to a framehift and protein truncation. The protein nibrin/Nbs1 is suspected to be involved in the cellular response to DNA damage caused by ionising irradiation, thus accounting for the radiosensitivity of Nijmegen breakage syndrome. We review here some of the more recent findings on the NBS1 gene and discuss how they impinge on the clinical manifestation of the disease.  相似文献   

2.
Summary Sixty-eight human fibroblast cell strains were assayed for radioresistant DNA synthesis (RDS), which is defined here as the absence of a steep component of inhibition of DNA synthesis in a dose-response curve when rate of DNA synthesis is plotted against radation doses from 0 to 20 Gy or more. Twenty-seven strains from patients who were previously diagnosed to have ataxia-telangiectasia (AT) were positive for this feature. Among the cell strains that did not show RDS were two from AT obligate heterozygotes (i.e., the parents of AT patients), two from patients with Alzheimer disease, two from patients with Friedreich ataxia, one from a patient with Bloom syndrome, one from a patient with Down syndrome, and six from patients with various immunodeficiencies. Four strains demonstrated RDS that was less pronounced than in most AT cells: one was from a patient with Nijmegen breakage syndrome, one was from a patient without ataxia but with choreiform movement disorder, telangiectasia, and elevated concentrations of -fetoprotein in the blood, and two were from AT patients. RDS therefore is not a necessary trait of human genetic diseases that involve radiosensitivity or immunodeficiency. Although recent reports suggest that some AT patients do not exhibit RDS, we found RDS in all the AT cell we tested.  相似文献   

3.
A murine model of Nijmegen breakage syndrome   总被引:1,自引:0,他引:1  
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, immunodeficiency, and predisposition to hematopoietic malignancy. The clinical and cellular phenotypes of NBS substantially overlap those of ataxia-telangiectasia (A-T). NBS is caused by mutation of the NBS1 gene, which encodes a member of the Mre11 complex, a trimeric protein complex also containing Mre11 and Rad50. Several lines of evidence indicate that the ataxia-telangiectasia mutated (ATM) kinase and the Mre11 complex functionally interact. Both NBS and A-T cells exhibit ionizing radiation (IR) sensitivity and defects in the intra S phase checkpoint, resulting in radioresistant DNA synthesis (RDS)-the failure to suppress DNA replication origin firing after IR exposure. NBS1 is phosphorylated by ATM in response to IR, and this event is required for activation of the intra S phase checkpoint (the RDS checkpoint). We derived a murine model of NBS, the Nbs1(DeltaB/DeltaB) mouse. Nbs1(DeltaB/DeltaB) cells are phenotypically identical to those established from NBS patients. The Nbs1(DeltaB) allele was synthetically lethal with ATM deficiency. We propose that the ATM-Mre11 complex DNA damage response pathway is essential and that ATM or the Mre11 complex serves as a nexus to additional components of the pathway.  相似文献   

4.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, short stature, immunodeficiency, and a high incidence of cancer. Cultured cells from NBS show chromosome instability, an increased sensitivity to radiation-induced cell killing, and an abnormal cell-cycle regulation after irradiation. Hitherto, patients with NBS have been divided into the two complementation groups V1 and V2, on the basis of restoration of radioresistant DNA synthesis, suggesting that each group arises from a different gene. However, the presence of genetic heterogeneity in NBS has been considered to be controversial. To localize the NBS gene, we have performed functional complementation assays using somatic cell fusion between NBS-V1 and NBS-V2 cells, on the basis of hyper-radiosensitivity, and then have performed a genomewide search for the NBS locus, using microcell-mediated chromosome transfer followed by complementation assays based on radiosensitivity. We found that radiation resistance was not restored in the fused NBS-V1 and NBS-V2 cells and that only human chromosome 8 complements the sensitivity to ionizing radiation, in NBS cell lines. In complementation assays performed after the transfer of a reduced chromosome, merely the long arm of chromosome 8 was sufficient for restoring the defect. Our results strongly suggest that NBS is a homogeneous disorder and that the gene for NBS is located at 8q21-24.  相似文献   

5.
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.  相似文献   

6.
MRE11 and NBS1 function together as components of a MRE11/RAD50/NBS1 protein complex, however deficiency of either protein does not result in the same clinical features. Mutations in the NBN gene underlie Nijmegen breakage syndrome (NBS), a chromosomal instability syndrome characterized by microcephaly, bird-like faces, growth and mental retardation, and cellular radiosensitivity. Additionally, mutations in the MRE11A gene are known to lead to an ataxia-telangiectasia-like disorder (ATLD), a late-onset, slowly progressive variant of ataxia-telangiectasia without microcephaly. Here we describe two unrelated patients with NBS-like severe microcephaly (head circumference -10.2 SD and -12.8 SD) and mutations in the MRE11A gene. Both patients were compound heterozygotes for a truncating or missense mutation and carried a translationally silent mutation. The truncating and missense mutations were assumed to be functionally debilitating. The translationally silent mutation common to both patients had an effect on splicing efficiency resulting in reduced but normal MRE11 protein. Their levels of radiation-induced activation of ATM were higher than those in ATLD cells.  相似文献   

7.
Nijmegen breakage syndrome (NBS; Seemanová II syndrome) and Berlin breakage syndrome (BBS), also known as ataxia-telangiectasia variants, are two clinically indistinguishable autosomal recessive familial cancer syndromes that share with ataxia-telangiectasia similar cellular, immunological, and chromosomal but not clinical findings. Classification in NBS and BBS was based on complementation of their hypersensitivity to ionizing radiation in cell-fusion experiments. Recent investigations have questioned the former classification into two different disease entities, suggesting that NBS/BBS is caused by mutations in a single radiosensitivity gene. We now have performed a whole-genome screen in 14 NBS/BBS families and have localized the gene for NBS/BBS to a 1-cM interval on chromosome 8q21, between markers D8S271 and D8S270, with a peak LOD score of 6.86 at D8S1811. This marker also shows strong allelic association to both Slavic NBS and German BBS patients, suggesting the existence of one major mutation of Slavic origin. Since the same allele is seen in both former complementation groups, genetic homogeneity of NBS/BBS can be considered as proved.  相似文献   

8.
The Mre11 complex and ATM: collaborating to navigate S phase   总被引:29,自引:0,他引:29  
Recently, findings regarding a group of cancer predisposition and chromosome instability syndromes, Nijmegen breakage syndrome (NBS), the ataxia-telangiectasia-like disorder (A-TLD) and ataxia telangiectasia have shed light on the unexpected role of recombinational DNA repair proteins in DNA-damage-dependent cell-cycle regulation. Mutations in the Mre11 complex cause A-TLD and NBS. In addition, functions of the Mre11 complex have been biochemically linked to ATM, the large protein kinase that is defective in ataxia-telangiectasia cells by the observation that Nbs1 is a bona fide substrate of the ATM kinase.  相似文献   

9.
Hypomorphic mutants affecting the Mre11 complex components Mre11 (Mre11ATLD1/ATLD1) and Nbs1 (Nbs1?B/?B) have been established in the mouse. These mutations recapitulate those inherited in human chromosome fragility syndromes, the ataxia-telangiectasia like disorder and Nijmegen breakage syndrome. At the cellular level, the human and murine mutants exhibit defects in the intra S and G2/M checkpoints and marked chromosome instability. Whereas these outcomes are associated with predisposition to malignancy in humans, similar predisposition was not observed in either Mre11ATLD1/ATLD1 or Nbs1?B/?B mice. These data demonstrate that chromosome breakage per se is insufficient to significantly enhance the initiation of tumorigenesis. However, these mutations greatly enhanced the risk of malignancy in p53+/- mice. We propose that proper metabolism of chromosome breaks arising during DNA replication is uniquely important for suppressing loss of heterozygosity and thus the penetrance of recessive oncogenic lesions.  相似文献   

10.
Ataxia telangiectasia and Rad3-related (ATR) protein, a kinase that regulates a DNA damage-response pathway, is mutated in ATR-Seckel syndrome (ATR-SS), a disorder characterized by severe microcephaly and growth delay. Impaired ATR signaling is also observed in cell lines from additional disorders characterized by microcephaly and growth delay, including non-ATR-SS, Nijmegen breakage syndrome, and MCPH1 (microcephaly, primary autosomal recessive, 1)-dependent primary microcephaly. Here, we examined ATR-pathway function in cell lines from three haploinsufficient contiguous gene-deletion disorders--a subset of blepharophimosis-ptosis-epicanthus inversus syndrome, Miller-Dieker lissencephaly syndrome, and Williams-Beuren syndrome--in which the deleted region encompasses ATR, RPA1, and RFC2, respectively. These three genes function in ATR signaling. Cell lines from these disorders displayed an impaired ATR-dependent DNA damage response. Thus, we describe ATR signaling as a pathway unusually sensitive to haploinsufficiency and identify three further human disorders displaying a defective ATR-dependent DNA damage response. The striking correlation of ATR-pathway dysfunction with the presence of microcephaly and growth delay strongly suggests a causal relationship.  相似文献   

11.
Hypomorphic mutants affecting the Mre11 complex components Mre11 (Mre11(ATLD1/ATLD1)) and Nbs1 (Nbs1(DeltaB/DeltaB)) have been established in the mouse. These mutations recapitulate those inherited in human chromosome fragility syndromes, the ataxia-telangiectasia like disorder and Nijmegen breakage syndrome. At the cellular level, the human and murine mutants exhibit defects in the intra S and G2/M checkpoints and marked chromosome instability. Whereas these outcomes are associated with predisposition to malignancy in humans, similar predisposition was not observed in either Mre11(ATLD1/ATLD1) or Nbs1(DeltaB/DeltaB) mice. These data demonstrate that chromosome breakage per se is insufficient to significantly enhance the initiation of tumorigenesis. However, these mutations greatly enhanced the risk of malignancy in p53+/- mice. We propose that proper metabolism of chromosome breaks arising during DNA replication is uniquely important for suppressing loss of heterozygosity and thus the penetrance of recessive oncogenic lesions.  相似文献   

12.
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.  相似文献   

13.
Nijmegen breakage syndrome (NBS) is a rare human disease displaying chromosome instability, radiosensitivity, cancer predisposition, immunodeficiency, and other defects [1, 2]. NBS is complexed with MRE11 and RAD50 in a DNA repair complex [3-5] and is localized to telomere ends in association with TRF proteins [6, 7]. We show that blood cells from NBS patients have shortened telomere DNA ends. Likewise, cultured NBS fibroblasts that exhibit a premature growth cessation were observed with correspondingly shortened telomeres. Introduction of the catalytic subunit of telomerase, TERT, was alone sufficient to increase the proliferative capacity of NBS fibroblasts. However, NBS, but not TERT, restores the capacity of NBS cells to survive gamma irradiation damage. Strikingly, NBS promotes telomere elongation in conjunction with TERT in NBS fibroblasts. These results suggest that NBS is a required accessory protein for telomere extension. Since NBS patients have shortened telomeres, these defects may contribute to the chromosome instability and disease associated with NBS patients.  相似文献   

14.
Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.  相似文献   

15.
Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by radiosensitivity, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of chromosomal aberrations and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS lymphoblasts were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the NBS1 gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.  相似文献   

16.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

17.
Abstract. The relationship between G2-phase checkpoint activation, cytoplasmic cyclin-B1 accumulation and nuclear phosphorylation of p34CDC2 was studied in Nijmegen breakage syndrome cells treated with DNA damaging agents. Experiments were performed on lymphoblastoid cell lines from four Nijmegen breakage syndrome patients with different mutations, as well as on cells from an ataxia telangiectasia patient. Lymphoblastoid cell lines were irradiated with 0.50–2 Gy X-rays and the percentage of G2-phase accumulated cells was evaluated by means of flow cytometry in samples that were harvested 24 h later. The G2-checkpoint activation was analysed by scoring the mitotic index at 2 and 4 h after treatment with 0.5 and 1 Gy X-rays and treatment with the DNA double-strand break inducer calicheamicin-γ1. Cytoplasmic accumulation of cyclin-B1 was evaluated by means of fluorescence immunostaining or Western blotting, in cells harvested shortly after irradiation with 1 and 2 Gy. The extent of tyrosine 15-phosphorylated p34CDC2 was assessed in the nuclear fractions. Nijmegen breakage syndrome cells showed suboptimal G2-phase checkpoint activation respect to normal cells and were greatly different from ataxia telangiectasia cells. Increased cytoplasmic cyclin-B1 accumulation was detected by both immunofluorescence and immunoblot in normal as well as in Nijmegen breakage syndrome cells. Furthermore, nuclear p34CDC2. phosphorylation was detected at a higher level in Nijmegen breakage syndrome than in ataxia telangiectasia cells. In conclusion, our data do not suggest that failure to activate checkpoints plays a major role in the radiosensitivity of Nijmegen breakage syndrome cells.  相似文献   

18.
19.
Chromosomal instability at common fragile sites in Seckel syndrome   总被引:2,自引:0,他引:2       下载免费PDF全文
Seckel syndrome (SCKL) is a rare, genetically heterogeneous disorder, with dysmorphic facial appearance, growth retardation, microcephaly, mental retardation, variable chromosomal instability, and hematological disorders. To date, three loci have been linked to this syndrome, and recently, the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) was identified as the gene mutated at the SCKL1 locus. The ATR mutation affects splicing efficiency, resulting in low levels of ATR in affected individuals. Elsewhere, we reported increased instability at common chromosomal fragile sites in cells lacking the replication checkpoint gene ATR. Here, we tested whether cells from patients carrying the SCKL1 mutation would show increased chromosome breakage following replication stress. We found that, compared with controls, there is greater chromosomal instability, particularly at fragile sites, in SCKL1-affected patient cells after treatment with aphidicolin, an inhibitor of DNA polymerase alpha and other polymerases. The difference in chromosomal instability between control and patient cells increases at higher levels of aphidicolin treatment, suggesting that the low level of ATR present in these patients is not sufficient to respond appropriately to replication stress. This is the first human genetic syndrome associated with increased chromosome instability at fragile sites following replication stress, and these findings may be related to the phenotypic findings in patients with SCKL1.  相似文献   

20.
Human RAD50 Deficiency in a Nijmegen Breakage Syndrome-like Disorder   总被引:1,自引:0,他引:1  
The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, ‘bird-like’ face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号