首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the impact of temperature on the photosyntheticactivity in the dinoflagellate Alexandrium fundyense (Ca28)for cultures grown at 75 mol photons m–2 s–1 overa range of temperatures. Increasing light intensity under statictemperatures caused a 5-fold decrease in the maximum quantumyield for photosystern II (PSII) (FvlFm) Carbon fixation ratesmirrored high-light depressions in (FvlFm). Cells in the presenceof streptomycin showed an 83% recovery in (FvlFm); therefore,only a minor proportion of the decline in (FvlFm)was attributableto PSII damage by bright light. For cells transferred to highertemperatures, F. was less sensitive to high light, decreasingonly 20–40% compared to the 80–90% decrease observedfor cells incubated at their ambient growth temperature. Forcells shifted to higher temperatures, the rapid recovery phaseof (FvlFm) was not present; therefore, cells did not initiatedownregulation of PSII. Higher capacity to maintain electrontransport, as indicated by the quantum yields, was confirmedby enhanced carbon fixation. Shifts lower temperatures significantlyincreased PSII sensitivity to high light. Overall, these relationshipsreflect the synergy between photosynthetic light and dark reactionswhich are differentially impacted by changes in temperature.  相似文献   

2.
By using a wild-type rice (Oryza sativa L. cv. Norin No. 8) and the chlorophyll (Chl) b-deficient mutant derived from Norin No. 8 (chlorina 11), the present study monitored the oxygen evolution, contents of Chl a and b, β-carotene, and lutein in leaf and the contents of cytochrome f, and the reaction centres of photosystem I (PSI) and photosystem II (PSII) in thylakoids. The oxygen evolution, maximal quantum yield of PSII (Fv/Fm) and Chl concentration remained constant in both Norin No. 8 and chlorina 11 under 5 and 2% of full sunlight for six days. On the other hand, on the thylakoid level, the PSII reaction centre of chlorina 11 was more stable even under high irradiance, while approximately 40% decrease in levels of the PSII reaction centre occurred under 2% of full sunlight for six days. However, under such conditions, by regulating the stoichiometry of active PSII and PSI centres, the light absorption balance in both rice types was adjusted between the two photosystems. The present study attempted to examine whether the light absorption balance between PSII and PSI is altered to effectively conduct photosynthesis in the wild-type and Chl b-deficient mutant rice seedlings.  相似文献   

3.
Maize (Zea mays L.) seedlings were grown in nutrient solution culture containing 0, 5, and 20 μM cadmium (Cd) and the effects on various aspects of photosynthesis were investigated after 24, 48, 96 and 168 h of Cd treatments. Photosynthetic rate (P N) decreased after 48 h of 20 μM Cd and 96 h of 5μM Cd addition, respectively. Chl a and total Chl content in leaves declined under 48 h of Cd exposure. Chl b content decreased on extending the period of Cd exposure to 96 h. The maximum quantum efficiency and potential photosynthetic capacity of PSII, indicated by Fv/Fm and Fv/Fo, respectively, were depressed after 96 h onset of Cd exposure. After 48 h of 5μM Cd and 24 h of 20 μM Cd treatments, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in the leaves started to decrease, respectively. We found that the limitation of photosynthetic capacity in Cd stressed maize leaves was associated with Cd toxicity on the light and the dark stages. However, Cd stress initially reduced the activities of Rubisco and PEPC and subsequently affected the PSII electron transfer, suggesting that the Calvin cycle reactions in maize plants are the primary target of the Cd toxic effect rather than PSII.  相似文献   

4.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

5.
To investigate the photoinhibition of photosynthesis in ‘Honeycrisp’ apple (Malus domestica Borkh. cv. Gala) leaves with zonal chlorosis, we compared pigments, CO2 assimilation and chlorophyll (Chl) a fluorescence (OJIP) transient between chlorotic leaves and normal ones. Chl and carotenoids (Car) contents, Chl a/b ratio, and absorptance were lower in chlorotic leaves than in normal ones, whereas Car/Chl ratio was higher in the former. Although CO2 assimilation and stomatal conductance were lower in chlorotic leaves, intercellular CO2 concentration did not differ significantly between the two leaf types. Compared with normal leaves, chlorotic ones had increased deactivation of oxygen-evolving complexes (OEC), minimum fluorescence (F o), dissipated energy, relative variable fluorescence at L-, W-, J- and I-steps, and decreased maximum fluorescence (F m), maximum quantum yield for primary photochemistry (F v /F m or TRo/ABS), quantum yield for electron transport (ETo/ABS), quantum yield for the reduction of end acceptors of photosystem I (PSI) (φRo and REo/ABS), maximum amplitude of IP phase, amount of active photosystem II (PSII) reaction centers (RCs) per cross section (CS) and total performance index (PItot,abs). In conclusion, photoinhibition occurs at both the donor (i.e., the OEC) and the acceptor sides of PSII in chlorotic leaves. The acceptor side is damaged more severely than the donor side, which possibly is the consequence of over-reduction of PSII due to the slowdown of Calvin cycle. In addition to decreasing light absorptance by lowering Chl level, energy dissipation is enhanced to protect chlorotic leaves from photo-oxidative damage.  相似文献   

6.
The alterations in the PSII activity of leaves, subsequent toa mild or severe heat stress were characterized by monitoringthe Chl a fluorescence and thermoluminescence emission fromintact leaves. The Chl a fluorescence measurements were carriedout in leaves adapted to either ‘state I’ or ‘stateII’ since under these two conditions the photosyntheticapparatus is known to have distinctly different structure-functionrelationships. The pattern of Chl a fluorescence induction instate II-adapted leaves was different from that of state I-adaptedleaves due to the alterations in the extent of photochemical(qQ) and non-photochemical (qE) quenching during the time courseof induction. The pattern of changes in qQ and qE values wasalso altered by heat treatment depending on the severity ofheat stress; severe heat stress (47°C) suppressing theseparameters drastically. Mild heat treatment (42°C) did notaffect the ability of leaves to undergo state I to state IItransition whereas the severe heat stress totally abolishedsuch transition. The fluorescence and thermoluminescence characteristicsof the leaves that have been exposed to the severe heat stresssuggest that a large number of affected PSII units retain afunctional water-oxidizing complex at the donor side. (Received June 14, 1994; Accepted July 19, 1995)  相似文献   

7.
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (P N) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (Fo) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 − qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity.  相似文献   

8.
The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (??PSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast.  相似文献   

9.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

10.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

11.
The STAY‐GREEN (SGR) gene encodes Mg‐dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion‐mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv/Fm) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light‐harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.  相似文献   

12.
Photosynthetic light‐response curves of the deep‐water Laminaria abyssalis Oliveira and of the intertidal L. digitata Lamoroux were determined and related to photoinhibition phenomena as monitored by oxygen evolution and photosystem II efficiency (FV/FM). L. abyssalis has half the pigment content, number of cells and plastids, and photosynthetic capacity per unit area compared with L. digitata. L. abyssalis showed a higher in vivo Chl a absorption coefficient and higher photosynthetic efficiency on a Chl a basis, although the two algae showed somewhat similar light‐response curves on a Chl a basis. Both species showed similar Chl a/Chl c and Chl a/fucoxanthin ratios, and similar dark respiration rates and light compensation points. In addition, they also showed similar convexities in their light‐response curves and no differences in their light saturation of FV/FM. Room temperature chlorophyll fluorescence induction measurements of fronds incubated in 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) suggest that both species may have a similar PSII absorption cross section. Thus, L. abyssalis appears to optimize its light absorption at very low light intensities, not by increasing the pigment content, but by absorbing light more efficiently. However, L. abyssalis was more sensitive to photoinhibition than L. digitata and showed no recovery of FV/FM and O2 evolution after a photoinhibitory treatment, even with a subsequent exposure to 24 h of dim light. L. digitata, on the other hand, recovered its photosynthetic capacity within 6 h under dim light. These results suggest that photosynthetic light‐induction curves based on Chl a are not a good indicator of either the photosynthetic capacity or the sensitivity to photoinhibition when macroalgae of different species are being compared. Based on their light‐response and photoinhibition characteristics, we suggest that L. abyssalis, a deep‐water oceanic macroalgae, is an atypical shade alga whereas L. digitata has the properties of a sun alga.  相似文献   

13.
Changes in intracellular levels of Chl a precursors were examinedin relation to changes in the PSI/PSII stoichiometry in thecyanophyte Synechocystis PCC 6714. Protochlorophyllide (Pchlide)accumulated markedly in cells with a low PSI/PSII stoichiometrygrown under light that is absorbed by Chl a (PSI light) whereasno accumulation occurred in cells with a high PSI/PSII stoichiometrygrown under light absorbed by phycobilisomes (PSII light). Levelsof Pchlide in cells grown under PSI light decreased rapidlyupon a shift to PSII light. The rapid decrease in Pchlide accompanieda transient increase in chlorophyllide a, indicating that reductionof Pchlide was enhanced by shift to PSII light. The action spectrumindicated that the Pchlide decrease upon the shift to PSII lightdepended on excitation of Pchlide, suggesting that the accumulationof Pchllide was due to limited excitation of Pchlide, so thatPchlide photoreduction, under PSI light. However, comparisonof levels of Pchlide and the photosystem complexes in wild-typePlectonema boryanum with those in a mutant that lacked the darkPchlide reductase (YFC 1004) indicated that dark reduction compensatedfor the limited photoreduction under PSI light. Similar compensationby dark reduction was confirmed with Synechocystis PCC 6714.In cultures of Synechocystis under conditions where Pchlidecould not be photoreduced, accumulation of Pchlide and low PSI/PSIIstoichiometry occurred only when cells were illuminated withlight that preferentially excited PSI. The results indicatethat the low PSI/PSII stoichiometry in cells grown under PSIlight is not a result of inefficient synthesis of Chl a witha reduced rate of Pchlide photoreduction. They suggest furtherthat accumulation of Pchlide under PSI light results from retardationof the Chl a synthesis due to suppression of PSI synthesis. 1Present address: Tsurukawa 5-15-11, Machida, Tokyo, 195 Japan.  相似文献   

14.
Polle JE  Benemann JR  Tanaka A  Melis A 《Planta》2000,211(3):335-344
 The assembly, organization and function of the photosynthetic apparatus was investigated in the wild type and a chlorophyll (Chl) b-less mutant of the unicellular green alga Chlamydomonas reinhardtii, generated via DNA insertional mutagenesis. Comparative analyses were undertaken with cells grown photoheterotrophically (acetate), photomixotrophically (acetate and HCO 3) or photoautotrophically (HCO 3). It is shown that lack of Chl b diminished the photosystem-II (PSII) functional Chl antenna size from 320 Chl (a and b) to about 95 Chl a molecules. However, the functional Chl antenna size of PSI remained fairly constant at about 290 Chl molecules, independent of the presence of Chl b. Western blot and kinetic analyses suggested the presence of inner subunits of the Chl a-b light-harvesting complex of PSII (LHCII) and the entire complement of the Chl a-b light-harvesting complex of PSI (LHCI) in the mutant. It is concluded that Chl a can replace Chl b in the inner subunits of the LHCII and in the entire complement of the LHCI. Growth of cells on acetate as the sole carbon source imposes limitations in the photon-use efficiency and capacity of photosynthesis. These are manifested as a lower quantum yield and lower light-saturated rate of photosynthesis, and as lower variable to maximal (Fv/Fmax) chlorophyll fluorescence yield ratios. This adverse effect probably originates because acetate shifts the oxidation-reduction state of the plastoquinone pool, and also because it causes a decrease in the amount and/or activity of Rubisco in the chloroplast. Such limitations are fully alleviated upon inclusion of an inorganic carbon source (e.g. bicarbonate) in the cell growth medium. Further, the work provides evidence to show that transformation of green algae can be used as a tool by which to generate mutants exhibiting a permanently truncated Chl antenna size and a higher (per Chl) photosynthetic productivity of the cells. Received: 10 November 1999 / Accepted: 22 December 1999  相似文献   

15.
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l−1, 400 mg l−1, and 800 mg l−1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate (P N) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QAEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration (C i) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l−1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants.  相似文献   

16.
We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2  = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center. Received: 14 August 1997 / Accepted: 26 September 1997  相似文献   

17.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis.  相似文献   

18.
Modulated (690 and 730 nm), as well as direct chlorophyll (Chl)a fluorescence and changes in the concentration of the oxidizedP700 were measured under steady state conditions in leaves ofhigher plants adapted to different light intensities. All theleaf samples exhibit an optimum curve of steady state fluorescenceyield (Fs) versus the light intensity but its position withrespect to light intensity varies considerably from one speciesto another or from one sample to other even in the same plantor within the same leaf sample. However, the optimum level ofFs was always at a moderate light intensity. By using the modulatedfluorescence technique, the system with all closed (Flm) oropen reaction center (Flo) were measured in steady state conditions.Each experimentally measured fluorescence yield was separatedinto a fluorescence emission of open (Fopen = Flo,(1—Vs))and closed (Fclosed = (Flm . Vs)) reaction center (RC) of photosystemII where Vs=(Fs – Flo)/(Flm – Flo) is the functionof fraction of closed reaction centers. With increasing lightintensity, the fraction of open RC decreased while the fractionof closed RC increased. Maximum quantum efficiency (Po) andactual quantum efficiency (P) decreased by increasing lightintensity. An optimum level of Fs was observed, when the fractionof closed reaction centers Vs of each sample was about 0.2 showinga common quenching mechanism which determines the fluorescenceproperties under steady state condition. This explains the apparentphenomenological contradiction that the fluorescence yield understeady state conditions can increase or decrease upon an increaseof actinic light. (Received December 31, 1994; Accepted May 1, 1995)  相似文献   

19.
Using two different inbred lines of Momordica charantia (bitter gourd), Y-106-5 and Z-1-4, the cell membrane stability, leaf water potential, pigment contents and the chlorophyll a fluorescence were investigated with different low night temperature (LNT) treatments over a 7 day time period and the sequent a 7 day recovery. Under LNT treatments, electrolyte leakage increased in both inbred lines and it increased more significantly in Y-106-5 plants than that in Z-1-4. The content of Chl b and total Chl decreased, while the Chl a/b ratio increased in stressed plants of the two lines. Almost all LNT treatments induced little change in Chl a content in Z-1-4 whereas obvious decreases in 5 and 8°C treated Y-106-5 plants were observed. Chilling changed the water status of plants and induced decreases of leaf water potential (LWP) in 5 and 8°C treated plants. LNT treatments also resulted in changes in the chlorophyll fluorescence parameters in bitter gourd leaves. The potential PSII activity (F v/F o) was reduced obviously by LNT stress and showed more sensitive to LNT than the maximum quantum efficiency of PSII primary photochemistry (F v/F m). The efficiency of open PSII centers exhibited a slight decrease whereas the photochemical quenching efficient (q P) was affected more seriously by LNT stress in both two inbred lines. The allocation of energy was rearranged by LNT stress. The light fraction used for PSII photochemistry (P) was reduced, while that used for heat dissipation (D) and the third fraction of absorbed light defines excess energy (E) increased due to the chilling stress. The impacts of LNT stress on bitter gourd generally increased with the number of LNT chilling and the severe night chilling. Plants were little affected by 12°C night chilling and the most acute damage was found in 5°C night chilling treatments. A 7 day recovery mitigated the adverse effects of LNT for both lines and almost all LNT treated plants restored to control levels except 5°C night chilling treated Y-106-5 plants. The two lines have a variance in tolerance to LNT stress and display obvious differences of phenotypes under extreme conditions.  相似文献   

20.
Pea plants were grown under intermittent illumination (ImL)conditions. The low dosage of light given to ImL plastids limitedthe rate of chlorophyll (Chl) a and Chl b biosynthesis and,therefore, it retarded the rate of photosynthetic unit formationand thylakoid membrane development. Depending on the developmentalstage of the photosynthetic unit, ImL plastids had variableChl a/Chl b ratios (2.7 <Chl a/Chlb<20) and showed distinctintermediates in the assembly of the chlorophyll a–b light-harvestingcomplex (LHC) of photosystem-II (PSII). The results are consistentwith a step-wise increment in the PSII antenna size involvingthree distinct forms of the PSII unit: (i) a PSII-core formwith about 37 Chl a molecules; (ii) a PSILß form containingthe PSII-core and the LHC-II-inner antenna with a total of about130 Chl (a + b) molecules, and (iii) the mature PSIIa form containingPSIIß and the LHC-II-peripheral antenna with a totalof 210–300 Chl (a + b) molecules. The thylakoid membranecontained polypeptide subunits b, c and d (the Lhcb1, 2 and3 gene products, respectively) when only the LHC-II-inner waspresent. Polypeptide subunit a, (the apoprotein of the chlorophyll-proteinknown as CP29), along with increased amounts of b and c appearedlater in the development of thylakoids, concomitant with theassembly of the LHC-II-peripheral. The results suggest thatpolypeptide subunit d has priority of assembly over subunita. It is implied that, of all LHC-II constituent proteins, subunitd is most proximal to the PSII-core complex and that it servesas a linker in the transfer of excitation energy from the bulkLHC-II (subunits b and c) to the PSII-core. The work also addressesthe origin of low-molecular-weight proteins (Mr = 19, 17.5 and13.4 kDa) which co-isolate with intact developing plastids andwhose abundance decreases during plastid development. Aminoacid compositional and immunoblot analyses show a nuclear histoneorigin for these low-molecular-weight proteins and suggest co-isolationof histone-containing nuclear vesicles along with intact developingplastids. 1Present address: Plant Physiology Research Group, The Universityof Calgary, Department of Biological Sciences, 2500 UniversityDrive N.W., Calgary, Alberta CANADA T2N 1N4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号