首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
Evidence is available showing that the coupling efficiency of the proton pump in cytochrome c oxidase of mitochondria can under certain conditions decrease significantly below the maximum attainable value. The view is developed that slips in the proton pump of cytochrome c oxidase represent an intrinsic switch mechanism which regulates the relative contribution of energy transfer and respiratory protection against oxygen toxicity by the oxidase.  相似文献   

2.
Cytochrome c oxidase is an electron-transfer driven proton pump. In this paper, we propose a complete chemical mechanism for the enzyme's proton-pumping site. The mechanism achieves pumping with chemical reaction steps localized at a redox center within the enzyme; no indirect coupling through protein conformational changes is required. The proposed mechanism is based on a novel redox-linked transition metal ligand substitution reaction. The use of this reaction leads in a straightforward manner to explicit mechanisms for achieving all of the processes previously determined (Blair, D.F., Gelles, J. and Chan, S.I. (1986) Biophys. J. 50, 713-733) to be needed to accomplish redox-linked proton pumping. These processes include: (1) modulation of the energetics of protonation/deprotonation reactions and modulation of the energetics of redox reactions by the structural state of the pumping site; (2) control of the rates of the pump's redox reactions with its electron-transfer partners during the turnover cycle (gating of electrons); and (3) regulation of the rates of the protonation/deprotonation reactions between the pumping site and the aqueous phases on the two sides of the membrane during the reaction cycle (gating of protons). The model is the first proposed for the cytochrome oxidase proton pump which is mechanistically complete and sufficiently specific that a realistic assessment can be made of how well the model pump would function as a redox-linked free-energy transducer. This assessment is accomplished via analyses of the thermodynamic properties and steady-state kinetics expected of the model. These analyses demonstrate that the model would function as an efficient pump and that its behavior would be very similar to that observed of cytochrome oxidase both in the mitochondrion and in purified preparations. The analysis presented here leads to the following important general conclusions regarding the mechanistic features of the oxidase proton pump. (1) A workable proton-pump mechanism does not require large protein conformational changes. (2) A redox-linked proton pump need not display a pH-dependent midpoint potential, as has frequently been assumed. (3) Mechanisms for redox-linked proton pumps that involve transition metal ligand exchange reactions are quite attractive because such reactions readily lend themselves to the linked gating processes necessary for proton pumping.  相似文献   

3.
Mårten Wikström  Vivek Sharma 《BBA》2018,1859(9):692-698
Cytochrome c oxidase is a remarkable energy transducer that seems to work almost purely by Coulombic principles without the need for significant protein conformational changes. In recent years it has become possible to follow key partial reactions of the catalytic cycle in real time, both with respect to electron and proton movements. These experiments have largely set the stage for the proton pump mechanism. The structures of the catalytic binuclear heme?copper site that is common to the huge family of heme?copper oxidases, are today well understood throughout the catalytic cycle of oxygen reduction to water based on both spectroscopic studies and quantum chemical calculations. Here, we briefly review this progress, and add some recent details into how the proton pump mechanism is protected from failure by leakage.  相似文献   

4.
Cytochrome oxidase catalyzes the reduction of O2 to water and conserves the considerable free energy available from this reaction in the form of a proton motive force. For each electron, one proton is electrogenically pumped across the membrane. Of particular interest is the mechanism by which the proton pump operates. Previous studies of the oxidase from Rhodobacter sphaeroides have shown that all of the pumped protons enter the enzyme through the D channel and that a point mutant, N139D, in the D channel completely eliminates proton pumping without reducing oxidase activity. N139 is one of three asparagines near the entrance of the D channel, where there is a narrowing or neck, through which a single file of water molecules pass. In the current work, it is shown that replacement of a second asparagine in this region by an asparate, N207D, also decouples the proton pump without altering the oxidase activity of the enzyme. Previous studies demonstrated that the N139D mutant results in an increase in the apparent pKa of E286, a functionally critical residue that is located 20 A away from N139 at the opposite end of the D channel. In the current work, it is shown that the N207 mutation also increases the apparent pKa of E286. This finding reinforces the proposal that the elimination of proton pumping is the result of an increase of the apparent proton affinity of E286, which, in turn, prevents the timely proton transfer to a proton accepter group within the exit channel of the proton pump.  相似文献   

5.
We have developed theory and the computational scheme for the analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. The theory allows one to connect the charge motions inside the enzyme to the membrane potential observed in the experiments by using data from the “dielectric topography” map of the enzyme that we have created. The developed theory is applied for the analysis of the potentiometric data recently reported by the Wikström group [I. Belevich, D.A. Bloch, N. Belevich, M. Wikström and M.I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2685-2690] on the O to E transition in Paracoccus denitrificans oxidase. Our analysis suggests, that the electron transfer to the binuclear center is coupled to a proton transfer (proton loading) to a group just “above” the binuclear center of the enzyme, from which the pumped proton is subsequently expelled by the chemical proton arriving to the binuclear center. The identity of the pump site could not be determined with certainty, but could be localized to the group of residues His326 (His291 in bovine), propionates of heme a3, Arg 473/474, and Trp164. The analysis also suggests that the dielectric distance from the P-side to Fe a is 0.4 or larger. The difficulties and pitfalls of quantitative interpretation of potentiometric data are discussed.  相似文献   

6.
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .  相似文献   

7.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the “pump site”, its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.  相似文献   

9.
We have developed theory and the computational scheme for the analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. The theory allows one to connect the charge motions inside the enzyme to the membrane potential observed in the experiments by using data from the "dielectric topography" map of the enzyme that we have created. The developed theory is applied for the analysis of the potentiometric data recently reported by the Wikstr?m group [I. Belevich, D.A. Bloch, N. Belevich, M. Wikstr?m and M.I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2685-2690] on the O to E transition in Paracoccus denitrificans oxidase. Our analysis suggests, that the electron transfer to the binuclear center is coupled to a proton transfer (proton loading) to a group just "above" the binuclear center of the enzyme, from which the pumped proton is subsequently expelled by the chemical proton arriving to the binuclear center. The identity of the pump site could not be determined with certainty, but could be localized to the group of residues His326 (His291 in bovine), propionates of heme a(3), Arg 473/474, and Trp164. The analysis also suggests that the dielectric distance from the P-side to Fe a is 0.4 or larger. The difficulties and pitfalls of quantitative interpretation of potentiometric data are discussed.  相似文献   

10.
The heme-copper oxidases may be divided into three categories, A, B, and C, which include cytochrome c and quinol-oxidising enzymes. All three types are known to be proton pumps and are found in prokaryotes, whereas eukaryotes only contain A-type cytochrome c oxidase in their inner mitochondrial membrane. However, the bacterial B- and C-type enzymes have often been reported to pump protons with an H+/e- ratio of only one half of the unit stoichiometry in the A-type enzyme. We will show here that these observations are likely to be the result of difficulties with the measuring technique together with a higher sensitivity of the B- and C-type enzymes to the protonmotive force that opposes pumping. We find that under optimal conditions the H+/e- ratio is close to unity in all the three heme-copper oxidase subfamilies. A higher tendency for proton leak in the B- and C-type enzymes may result from less efficient gating of a proton pump mechanism that we suggest evolved before the so-called D-channel of proton transfer. There is also a discrepancy between results using whole bacterial cells vs. phospholipid vesicles inlaid with oxidase with respect to the observed proton pumping after modification of the D-channel residue asparagine-139 (Rhodobacter sphaeroides numbering) to aspartate in A-type cytochrome c oxidase. This discrepancy might also be explained by a higher sensitivity of proton pumping to protonmotive force in the mutated variant. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

11.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed.  相似文献   

12.
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.  相似文献   

13.
Since its discovery [Nature 266 (1977) 271], the function of cytochrome c oxidase (and other haem-copper oxidases) as a redox-driven proton pump has been subject of both intense research and controversy, and is one of the key unsolved issues of bioenergetics and of biochemistry more generally. Despite the fact that the mechanism of proton translocation is not yet fully understood on the molecular level, many important details and principles have been learned. In the hope of accelerating progress, some of these will be reviewed here, together with a brief presentation of a novel proton pump mechanism, and of the emergence of a molecular basis for control of its efficiency.  相似文献   

14.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

15.
In at least one component of the mitochondrial respiratory chain, cytochrome c oxidase, exothermic electron transfer reactions are used to drive vectorial proton transport against an electrochemical hydrogen ion gradient across the mitochondrial inner membrane. The role of the gating of electrons (the regulation of the rates of electron transfer into and out of the proton transport site) in this coupling between electron transfer and proton pumping has been explored. The approach involves the solution of the steady-state rate equations pertinent to proton pump models which include, to various degrees, the uncoupled (i.e., not linked to proton pumping) electron transfer processes which are likely to occur in any real electron transfer-driven proton pump. This analysis furnishes a quantitative framework for examining the effects of variations in proton binding site pKas and metal center reduction potentials, the relationship between energy conservation efficiency and turnover rate, the conditions for maximum power output or minimum heat production, and required efficiency of the gating of electrons. Some novel conclusions emerge from the analysis, including: An efficient electron transfer-driven proton pump need not exhibit a pH-dependent reduction potential; Very efficient gating of electrons is required for efficient electron transfer driven proton pumping, especially when a reasonable correlation of electron transfer rate and electron transfer exoergonicity is assumed; and A consideration of the importance and possible mechanisms of the gating of electrons suggests that efficient proton pumping by CuA in cytochrome oxidase could, in principle, take place with structural changes confined to the immediate vicinity of the copper ion, while proton pumping by Fea would probably require conformational coupling between the iron and more remote structures in the enzyme. The conclusions are discussed with reference to proton pumping by cytochrome c oxidase, and some possible implications for oxidative phosphorylation are noted.  相似文献   

16.
M Mueller  A Azzi 《Biochimie》1986,68(3):401-406
Cytochrome-c oxidase of bovine heart mitochondria was depleted of copper A by dialysis against 1 M KCN in the presence of dodecylmaltoside. There was no difference of the pH-dependence of the midpoint potential between the intact and the copper-depleted enzyme. Oxidation of reduced cytochrome a2+a3(3+).CN complex released about 1 proton/electron in the medium at pH 7.6. This release was inhibited by N,N'-dicyclohexylcarbodiimide. Again there was no difference between the intact and Cu-depleted enzyme. This limits the role of copper A in the mechanism of the proton pump. On the other hand, these experiments showed that cytochrome a could be a component of the proton pump.  相似文献   

17.
A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.  相似文献   

18.
Mills DA  Hosler JP 《Biochemistry》2005,44(12):4656-4666
In the absence of subunit III the aa(3)-type cytochrome c oxidase exhibits a shortened catalytic life span (total number of turnovers) due to an increased probability of undergoing irreversible inactivation during steady-state turnover. Inactivation results from structural alteration of the heme a(3)-Cu(B) active site in subunit I [Hosler (2004) Biochim. Biophys. Acta 1655, 332-339]. The absence of subunit III also dramatically slows proton uptake to the active site via the D proton pathway, as well as inhibiting the proton backflow/exit pathway that connects the active site/proton pump with the outer surface of the oxidase complex. Here we demonstrate that these phenomena are linked: slow proton delivery to the active site through these pathways induces suicide inactivation, thus shortening the catalytic life span of the enzyme. Mutations that inhibit the D pathway, but not the K pathway, increase the probability of suicide inactivation. Strong inhibition of the D pathway allows suicide inactivation to occur even in the presence of subunit III. Arachidonic acid, which stimulates proton uptake by the D pathway, retards suicide inactivation. Steady-state turnover in the presence of DeltaPsi and DeltapH, which inhibits proton uptake from the inner surface of the protein, enhances suicide inactivation. Simultaneous inhibition of proton uptake from both sides of the protein by a double mutation affecting the D pathway and the proton backflow/exit pathway greatly shortens the catalytic life span of the oxidase even in the presence of subunit III. Thus, maintenance of rapid proton transfer through the D pathway and the backflow/exit pathway is one mechanism by which subunit III normally functions to prevent suicide inactivation of cytochrome c oxidase. The experiments suggest that increased lifetimes of the heme a(3) oxoferryl intermediates as well as the anionic form of Glu286 of the D pathway cause suicide inactivation in the active site.  相似文献   

19.
Cytochrome c oxidase (COX), the last enzyme of the respiratory chain of aerobic organisms, catalyzes the reduction of molecular oxygen to water. It is a redox-linked proton pump, whose mechanism of proton pumping has been controversially discussed, and the coupling of proton and electron transfer is still not understood. Here, we investigated the kinetics of proton transfer reactions following the injection of a single electron into the fully oxidized enzyme and its transfer to the hemes using time-resolved absorption spectroscopy and pH indicator dyes. By comparison of proton uptake and release kinetics observed for solubilized COX and COX-containing liposomes, we conclude that the 1-μs electron injection into Cu(A), close to the positive membrane side (P-side) of the enzyme, already results in proton uptake from both the P-side and the N (negative)-side (1.5 H(+)/COX and 1 H(+)/COX, respectively). The subsequent 10-μs transfer of the electron to heme a is accompanied by the release of 1 proton from the P-side to the aqueous bulk phase, leaving ~0.5 H(+)/COX at this side to electrostatically compensate the charge of the electron. With ~200 μs, all but 0.4 H(+) at the N-side are released to the bulk phase, and the remaining proton is transferred toward the hemes to a so-called "pump site." Thus, this proton may already be taken up by the enzyme as early as during the first electron transfer to Cu(A). These results support the idea of a proton-collecting antenna, switched on by electron injection.  相似文献   

20.
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号