首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epsilon isoform of diacylglycerol kinase (DGKepsilon) is unique among mammalian DGKs in having a segment of hydrophobic amino acids comprising approximately residues 20 to 41. Several algorithms predict this segment to be a transmembrane (TM) helix. Using PepLook, we have performed an in silico analysis of the conformational preference of the segment in a hydrophobic environment comprising residues 18 to 42 of DGKepsilon. We find that there are two distinct groups of stable conformations, one corresponding to a straight helix that would traverse the membrane and the second corresponding to a bent helix that would enter and leave the same side of the membrane. Furthermore, the calculations predict that substituting the Pro32 residue in the hydrophobic segment with an Ala will cause the hydrophobic segment to favor a TM orientation. We have expressed the P32A mutant of DGKepsilon, with a FLAG tag (an N-terminal 3xFLAG epitope tag) at the amino terminus, in COS-7 cells. We find that this mutation causes a large reduction in both k(cat) and K(m) while maintaining k(cat)/K(m) constant. Specificity of the P32A mutant for substrates with polyunsaturated acyl chains is retained. The P32A mutant also has higher affinity for membranes since it is more difficult to extract from the membrane with high salt concentration or high pH compared with the wild-type DGKepsilon. We also evaluated the topology of the proteins with confocal immunofluorescence microscopy using NIH 3T3 cells. We find that the FLAG tag at the amino terminus of the wild-type enzyme is not reactive with antibodies unless the cell membrane is permeabilized with detergent. We also demonstrate that at least a fraction of the wild-type DGKepsilon is present in the plasma membrane and that comparable amounts of the wild-type and P32A mutant proteins are in the plasma membrane fraction. This indicates that in these cells the hydrophobic segment of the wild-type DGKepsilon is not TM but takes up a bent conformation. In contrast, the FLAG tag at the amino terminus of the P32A mutant is exposed to antibody both before and after membrane permeabilization. This modeling approach thus provides an explanation, not provided by simple predictive algorithms, for the observed topology of this protein in cell membranes. The work also demonstrates that the wild-type DGKepsilon is a monotopic protein.  相似文献   

2.
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or “Types” based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-?, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.  相似文献   

3.
Signaling roles of diacylglycerol kinases   总被引:8,自引:0,他引:8  
Diacylglycerol kinases (DGKs) attenuate diacylglycerol signaling by converting this lipid to phosphatidic acid (PA). The nine mammalian DGKs that have been identified are widely expressed, but each isoform has a unique tissue and subcellular distribution. Their kinase activity is regulated by mechanisms that modify their access to diacylglycerol, directly affect their kinase activity, or alter their ability to bind to other proteins. In many cases, these enzymes regulate the activity of proteins that are modulated by either diacylglycerol or PA. Experiments using cultured cells and model organisms have demonstrated that DGKs have prominent roles in neuronal transmission, lymphocyte signaling, and carcinogenesis.  相似文献   

4.
There are ten mammalian diacylglycerol kinases (DGKs) whose primary role is to terminate diacylglycerol (DAG) signaling. However, it is becoming increasingly apparent that DGKs also influence signaling events through their product, phosphatidic acid (PA). They do so in some cases by associating with proteins and then modifying their activity by generating PA. In other cases, DGKs broadly regulate signaling events by virtue of their ability to provide PA for the synthesis of phosphatidylinositols (PtdIns).  相似文献   

5.
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKζ is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD‐95. Overexpression of DGKζ in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD‐95 binding. Conversely, DGKζ knockdown reduces spine density. Mice deficient in DGKζ expression show reduced spine density and excitatory synaptic transmission. Time‐lapse imaging indicates that DGKζ is required for spine maintenance but not formation. We propose that PSD‐95 targets DGKζ to synaptic DAG‐producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.  相似文献   

6.
Tani M  Hannun YA 《FEBS letters》2007,581(7):1323-1328
Neutral sphingomyelinase 2 (nSMase2), which has two hydrophobic segments at its NH(2)-terminus, plays an important role in ceramide-mediated cell regulation. Here, we investigated the membrane topology of nSMase2. When a double-tagged nSMase2 at both the NH(2) and COOH termini, was overexpressed in MCF-7 cells, the signals from both tags were detected in the inner leaflet of the plasma membrane. Furthermore, insertion of a tag into the internal sequence and green fluorescent protein-fused deletion mutants revealed that the entire catalytic region of the protein was located on the cytosolic face of the membranes and each hydrophobic segment is integrated into the membranes, but unlikely to span the entire membrane. These results indicate the presence of the enzyme in the inner leaflet of plasma membrane.  相似文献   

7.
Molecular regulation of T-cell anergy   总被引:1,自引:0,他引:1  
  相似文献   

8.
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or "Types" based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-?, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.  相似文献   

9.
Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (~2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.  相似文献   

10.
Golvesin is a new protein associated with membranes of the Golgi apparatus and post-Golgi vesicles in Dictyostelium cells. An internal hydrophobic sequence of 24 amino-acid residues is responsible for anchoring golvesin to the membranes of these organelles. In an attempt to visualize organelle dynamics in vivo, we have used specific antibody and other labels to localize golvesin-green fluorescent protein (GFP) constructs to different cellular compartments. With a GFP tag at its N-terminus, golvesin shows the same localization as the untagged protein. It is transferred to two post-Golgi compartments, the endosomal and contractile vacuole systems. Endosomes are decorated with GFP-golvesin within less than 10 min of their internalisation, and keep the label during the acidic phase of the pathway. Blockage of the C-terminus with GFP causes entrapment of the protein in the Golgi apparatus, indicating that a free C-terminus is required for transfer of golvesin to any of the post-Golgi compartments. The C-terminally tagged golvesin proved to be a reliable Golgi marker in Dictyostelium cells revealing protrusion of Golgi tubules at peak velocities of 3 to 4 microm x s(-1). The fusion protein is retained in Golgi vesicles during mitosis, visualizing Golgi disassembly and reorganization in line with cytokinesis.  相似文献   

11.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   

12.
Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy.  相似文献   

13.
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.  相似文献   

14.
Human ATP-binding cassette transporter isoform B6 (ABCB6) has been proposed to be situated in both the inner and outer membranes of mitochondria. These inconsistent observations of submitochondrial localization have led to conflicting interpretation in view of directions of transport facilitated by ABCB6. We show here that ABCB6 has an N-terminal hydrophobic region of 220 residues that functions as a primary determinant of co-translational targeting to the endoplasmic reticulum (ER), but it does not have any known features of a mitochondrial targeting sequence. We defined the potential role of this hydrophobic extension of ABCB6 by glycosylation site mapping experiments, and demonstrated that the first hydrophobic segment acts as a type I signal-anchor sequence, which mediates N-terminal translocation through the ER membrane. Laser scanning microscopic observation revealed that ABCB6 did not co-localize with mitochondrial staining. Rather, it localized in the ER-derived and brefeldin A-sensitive perinuclear compartments, mainly in the Golgi apparatus.  相似文献   

15.
This review discusses main features of transmembrane (TM) proteins which distinguish them from water‐soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co‐translational and post‐translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large‐scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen‐bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side‐chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding.  相似文献   

16.
Helicobacter pylori infection causes peptic ulcers and gastric cancer. A major toxin secreted by H. pylori is the bipartite vacuolating cytotoxin A, VacA. The toxin is believed to enter host cells as two subunits: the p55 subunit (55 kDa) and the p33 subunit (33 kDa). At the biochemical level, it has been shown that VacA forms through the assembly of large multimeric pores composed of both the p33 subunit and the p55 subunit in biological membranes. One of the major target organelles of VacA is the mitochondria. Since only the p33 subunit has been reported to be translocated into mitochondria and the p55 subunit is not imported, it has been contentious as to whether VacA assembles into pores in a mitochondrial membrane. Here we show the p55 protein is imported into the mitochondria along with the p33 protein subunit. The p33 subunit integrally associates with the mitochondrial inner membrane, and both the p33 subunit and the p55 subunit are exposed to the mitochondrial intermembrane space. Their colocalization suggests that they could reassemble and form a pore in the inner mitochondrial membrane.  相似文献   

17.
Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.  相似文献   

18.
Previous studies indicate that binding of α-synuclein to membranes is critical for its physiological function and the development of Parkinson's disease (PD). Here, we have investigated the association of fluorescence-labeled α-synuclein variants with different types of giant unilamellar vesicles using confocal microscopy. We found that α-synuclein binds with high affinity to anionic phospholipids, when they are embedded in a liquid-disordered as opposed to a liquid-ordered environment. This indicates that not only electrostatic forces but also lipid packing and hydrophobic interactions are critical for the association of α-synuclein with membranes in vitro. When compared to wild-type α-synuclein, the disease-causing α-synuclein variant A30P bound less efficiently to anionic phospholipids, while the variant E46K showed enhanced binding. This suggests that the natural association of α-synuclein with membranes is altered in the inherited forms of Parkinson's disease.  相似文献   

19.
We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC) mu involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKC mu-green fluorescent protein fusion proteins costained with the Golgi compartment-specific markers p24 and p230. Deletions of either the NH(2)-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKC mu completely abrogated Golgi localization of PKC mu. As an NH(2)-terminal PKC mu fragment was colocalized with p24, this region of PKC mu is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKC mu to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKC mu found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKC mu, in which Golgi compartment recruitment precedes and is essential for activation loop phosphorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH(2)-terminal serine(s) in the regulatory domain. PKC mu activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKC mu function at the Golgi compartment.  相似文献   

20.
《Free radical research》2013,47(3):336-341
Abstract:

It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号