首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal folding and accumulation of alpha-synuclein is implicated in several neurological disorders including Parkinson's disease. Although alpha-synuclein is a typical cytoplasmic protein, a small amount of both monomeric and aggregated forms is secreted from cells and is present in human body fluids, such as cerebrospinal fluid. Extracellular alpha-synuclein aggregates have been shown to be neurotoxic, posing a challenge to any cell exposed to them. Here, we examine the internalization of various forms of extracellular alpha-synuclein, including fibrils, oligomers, and monomer, into neuronal cells and their subsequent degradation. Internalization of fibrillar alpha-synuclein could be inhibited by low temperature or the expression of a dominant-negative mutant dynamin-1 K44A, suggesting the endocytosis-mediated internalization. The internalized fibrils moved through the endosomal pathway and were degraded in the lysosome, which ultimately resulted in the clearance of the alpha-synuclein aggregates from the culture medium. Non-fibrillar oligomeric aggregates were also internalized via endocytosis and degraded by the lysosome. In contrast to aggregate uptake, the internalization of monomeric alpha-synuclein was unaffected by cold temperature and the expression of dynamin-1 K44A, consistent with direct translocation across the plasma membrane. Internalized monomers rapidly pass the plasma membrane, escaping the cells before being degraded by the cellular proteolytic systems. These results suggest that only aggregated forms of extracellular alpha-synuclein can be cleared by cell-mediated uptake and degradation, and this might represent a mechanism of preventing neurons from exposure to potentially toxic alpha-synuclein.  相似文献   

2.
Apolipoprotein B100 (apoB) is a large secretory protein that forms very low density lipoprotein in liver. An in vitro degradation assay was developed using rabbit reticulocyte (RR) lysate in order to investigate the mechanism of intracellular degradation of newly synthesized apoB by the ubiquitin-proteasome pathway. [3H]apoB, isolated from [3H]leucine pulsed/chased Hep G2 cells, was degraded 51% when incubated for 2 h at 37°C in an assay mixture that included RR lysate (source of the ubiquitin conjugation system and proteasome) and an exogenous ATP regenerating system. ApoB degradation was ATP-dependent and degradation fragments were not observed suggesting that the very large apoB molecule was extensively degraded. ApoB degradation was decreased to 50% when potent proteasome inhibitors, clasto-lactacystin β-lactone (10 μM) or MG-132 (50 μM), were added to the reaction mixture, but was not affected by the cysteine protease inhibitor, E-64, or the serine protease inhibitor, phenylmethylsulfonyl fluoride. ApoB degradation was inhibited by the mutant ubiquitin protein K48R and by ubiquitin aldehyde, an inhibitor of ubiquitin-protein isopeptidases. During incubation ubiquitination of apoB increased even as apoB was being degraded. These results suggest that in vitro degradation of apoB, a large secretory protein that is normally found in the endoplasmic reticulum (ER) lumen or associated with the ER membrane, was proteasome-dependent and involved both ubiquitination and deubiquitination steps.  相似文献   

3.
The rate-limiting step in protein secretion is folding, which occurs in the endoplasmic reticulum (ER) lumen, and almost all secreted proteins contain disulfide bonds that form in the ER and stabilize the native state. Secreted proteins unable to fold may aggregate or they may be subject to ER-associated protein degradation. To examine the fate of aberrant forms of a well characterized, disulfide-bonded secreted protein, we expressed bovine pancreatic trypsin inhibitor in yeast. Bovine pancreatic trypsin inhibitor is a single domain, 58-amino acid polypeptide containing three disulfide bonds, and yeast cells secrete the wild type protein. In contrast, the Y35L mutant, which folds rapidly but is unstable, remains soluble and is not secreted. Surprisingly, the proteolysis of Y35L is unaffected in yeast containing mutations in genes encoding factors required for ER-associated protein degradation and is stable if artificially retained in the ER. Rather, Y35L is diverted from the Golgi to the vacuole and degraded. Because only the mutant protein is quantitatively proteolyzed these data suggest that a post-ER quality control check-point diverts unstable proteins to the vacuole for degradation.  相似文献   

4.
The human asialoglycoprotein receptor subunit H2a is cotranslationally inserted into the ER membrane. When expressed together with subunit H1 in mouse fibroblasts part forms a hetero-oligomer that is transported to the cell surface, but when expressed alone it is all rapidly degraded. Degradation is insensitive to lysosomotropic agents and the undegraded precursor is last detected in the ER region of the cell. Small amounts of an intermediate 35-kD degradation product can be detected (Amara, J. F., G. Lederkremer, and H. F. Lodish. 1989. J. Cell Biol. 109:3315). We show here that the oligosaccharides on both precursor H2a and the 35-kD fragment are Man6-9GlcNAc2, structures typically found in pre-Golgi compartments. Subcellular fractionation shows that the intermediate degradation product does not cofractionate with the lysosomal enzyme beta-galactosidase, but is found in a part of the ER that contains ribosomes. Thus the intermediate degradation product is localized in the ER, indicating that the initial degradation event does take place in the ER. All degradation of H2a, including the initial endoproteolytic cleavage generating the 35-kD intermediate, is blocked by the protease inhibitors N-tosyl-L-lysine chloromethyl ketone and N-tosyl-L-phenylalanine chloromethyl ketone. These drugs do not inhibit ER-to-Golgi transport of H1. Depleting the cells of ATP or inhibiting protein synthesis allows the initial endoproteolytic cleavage to occur, but blocks further degradation of the 35-kD intermediate; thus we can convert all cellular H2 into the 35-kD intermediate. Approximately 50% of H2b, a splicing variant differing from H2a by a five amino acid deletion, can be transported to the cell surface, and the rest appears to be degraded by the same pathway as H2a, both when expressed alone in fibroblasts and together with H1 in HepG2 cells. Addition of N-tosyl-L-lysine chloromethyl ketone or N-tosyl-L-phenylalanine chloromethyl ketone blocks degradation of the approximately 50% that is not transported, but does not affect the fraction of H2b that moves to the Golgi region. Thus, a protein destined for degradation will not be transported to the Golgi region if degradation is inhibited.  相似文献   

5.
We have recently shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, an endoplasmic reticulum (ER) membrane protein, is degraded in ER membranes prepared from sterol pretreated cells and that such degradation is catalyzed by a cysteine protease within the reductase membrane domain. The use of various protease inhibitors suggested that degradation of HMG-CoA reductase in vitro is catalyzed by a cathepsin L-type cysteine protease. Purified ER contains E-64-sensitive cathepsin L activity whose inhibitor sensitivity was well matched to that of HMG-CoA reductase degradation in vitro. CLIK-148 (cathepsin L inhibitor) inhibited degradation of HMG-CoA reductase in vitro. Purified cathepsin L also efficiently cleaved HMG-CoA reductase in isolated ER preparations. To determine whether a cathepsin L-type cysteine protease is involved in sterol-regulated degradation of HMG-CoA reductase in vivo, we examined the effect of E-64d, a membrane-permeable cysteine protease inhibitor, in living cells. While lactacystin, a proteasome-specific inhibitor, inhibited sterol-dependent degradation of HMG-CoA reductase, E-64d failed to do so. In contrast, degradation of HMG-CoA reductase in sonicated cells was inhibited by E-64d, CLIK-148, and leupeptin but not by lactacystin. Our results indicate that HMG-CoA reductase is degraded by the proteasome under normal conditions in living cells and that it is cleaved by cathepsin L leaked from lysosomes during preparation of the ER, thus clarifying the apparently paradoxical in vivo and in vitro results. Cathepsin L-dependent proteolysis was observed to occur preferentially in sterol-pretreated cells, suggesting that sterol treatment results in conformational changes in HMG-CoA reductase that make it more susceptible to such cleavage.  相似文献   

6.
Many kinds of misfolded secretory proteins are known to be degraded in the endoplasmic reticulum (ER). Dislocation of misfolded proteins from the ER to the cytosol and subsequent degradation by the proteasome have been demonstrated. Using the yeast Saccharomyces cerevisiae, we have been studying the secretion of a heterologous protein, Rhizopus niveus aspartic proteinase-I (RNAP-I). Previously, we found that the pro sequence of RNAP-I is important for the folding and secretion, and that Deltapro, a mutated derivative of RNAP-I in which the entire region of the pro sequence is deleted, forms gross aggregates in the yeast ER. In this study, we show that the degradation of Deltapro occurs independently of the proteasome. Its degradation was not inhibited either by a potent proteasome inhibitor or in a proteasome mutant. We also show that neither the export from the ER nor the vacuolar proteinase is required for the degradation of Deltapro. These results raise the possibility that the Deltapro aggregates are degraded in the ER lumen. We have isolated a yeast mutant in which the degradation of Deltapro is delayed. We show that the mutated gene is IRA2, which encodes a GTPase-activating protein for Ras. Because Ira2 protein is a negative regulator of the Ras-cAMP pathway, this result suggests that hyperactivation of the Ras-cAMP pathway inhibits the degradation of Deltapro. Consistently, down-regulation of the Ras-cAMP pathway in the ira2 mutant suppressed the defect of the degradation of Deltapro. Thus, the Ras-cAMP signal transduction pathway seems to control the proteasome-independent degradation of the ER misfolded protein aggregates.  相似文献   

7.
8.
Greater than 85% of the transport-impaired PiZ variant of human alpha 1-antitrypsin is retained within transfected mouse hepatoma cells and is subjected to intracellular degradation (Le, A., Graham, K., and Sifers, R.N. (1990) J. Biol. Chem. 265, 14001-14007). The retained protein undergoes a discrete size reduction that results from the modification of its endoglycosidase H-sensitive oligosaccharides and is inhibited by 1-deoxymannojirimycin. Metabolic poisons and inhibitors of protein synthesis perturb the intracellular degradation of the retained protein but do not affect its size reduction. The ability of metabolic poisons to influence the degradation of the PiZ variant in cells treated with brefeldin A indicates that export of the macromolecule from the endoplasmic reticulum (ER) is not the energy-dependent component of its degradation. Subcellular fractionation experiments have verified that both the size reduction and degradation of the retained PiZ variant occur within the rough ER. Finally, sedimentation velocity centrifugation analysis of radiolabeled cell extracts has indicated that approximately 80% of the PiZ variant consists as soluble aggregates immediately after its synthesis. An inability to detect more extensive aggregation during the retention period supports our previous conclusion that only a small fraction of the macromolecules actually form large insoluble aggregates (Graham, K.S., Le, A., and Sifers, R.N. (1990) J. Biol. Chem. 265, 20463-20468). Overall, these findings indicate that soluble aggregates of the PiZ variant are degraded within the ER by a mechanism sensitive to inhibitors of protein synthesis.  相似文献   

9.
《Autophagy》2013,9(2):96-106
When a fusion protein of cytochrome b5 (Cyt b5) and the red fluorescent protein (RFP) are expressed in tobacco BY-2 cells, the expressed protein forms intracellular aggregates that emit red fluorescence. When such cells are grown to the stationary phase or incubated with nutrient limit medium, RFP fluorescence can be detected in the vacuolar lumen. We investigated this transport mechanism using a limited-nitrogen model. E-64 and 3-methyladenine, which inhibit authophagic processes, inhibited the transport of RFP signal to the vacuole. We next traced the autophagic process in tobacco cells using YFP fused with the tobacco Atg8 homologue (YFP–NtAtg8) and analyzed the contribution of autophagy to the vacuolar transport of the aggregates. Under limited-nitrogen conditions, the aggregates were degraded in preference to otherorganelles, and the autophagosomes colocalized with the aggregates at a higher frequency than with mitochondria. This is the first demonstration that selective macroautophagic degradation occurs in plant cells.  相似文献   

10.
U H Weidle  P Buckel  R Mattes 《Gene》1988,73(2):439-447
We have constructed amplified Chinese hamster ovary cell lines constitutively synthesizing human tissue-type plasminogen activator (t-PA) or a derivative in which the domains homologous to epidermal growth factor and kringle 1 have been removed [delta(G + K1)]. The properties of the secreted proteins were investigated when synthesized in the presence or absence of the serine protease inhibitor aprotinin in the medium. t-PA in the culture supernatants was either single-chain or two-chain protein. The protease activity of both forms was stimulated by fibrin. The biochemical properties of delta(G + K1) were significantly different when harvested from cells grown under different culturing conditions. Protease activity of delta(G + K1) was stimulated ten- to 20-fold by fibrin when harvested from medium with aprotinin, but was stimulated only two- to three-fold when aprotinin was absent from the serum. Characterization of the secreted proteins revealed that the heavy-chain equivalent of delta(G + K1) is degraded when serine protease inhibitor is absent in the culture medium. These results indicate that the functional and biochemical properties of restructured versions of t-PA may depend on the presence of protease(s) in the culture supernatants.  相似文献   

11.
Over 80% of the polysomes in corn endosperm sediment along with protein bodies at 30 xg from seeds ground in cytoskeleton-stabilizing buffer. The cytoskeleton-disrupting agents, Tris-HCl, K+, heparin, and sodium deoxycholate cause polysome release, while protease K and the non-ionic detergent, PTE, are effective only in the presence of these agents, and RNase is almost without effect. We suggest that many of the polysomes in corn endosperm are associated via their ribosomes, but not mRNA or nascent polypeptides with the actin component of the cytoskeleton and only indirectly with membranes. Corn endosperm homogenates examined under the fluorescence microscope show polysomes coating individual protein bodies and co-localizing with actin, but not with ER.  相似文献   

12.
We have previously demonstrated that glycosylphosphatidylinositol (GPI) anchors strongly influence protein trafficking in the procyclic insect stage of Trypanosoma brucei (M. A. McDowell, D. A. Ransom, and J. D. Bangs, Biochem. J. 335:681-689, 1998), where GPI-minus variant surface glycoprotein (VSG) reporters have greatly reduced rates of endoplasmic reticulum (ER) exit but are ultimately secreted. We now demonstrate that GPI-dependent trafficking also occurs in pathogenic bloodstream trypanosomes. However, unlike in procyclic trypanosomes, truncated VSGs lacking C-terminal GPI-addition signals are not secreted but are mistargeted to the lysosome and degraded. Failure to export these reporters is not due to a deficiency in secretion of these cells since the N-terminal ATPase domain of the endogenous ER protein BiP is efficiently secreted from transgenic cell lines. Velocity sedimentation experiments indicate that GPI-minus VSG dimerizes similarly to wild-type VSG, suggesting that degradation is not due to ER quality control mechanisms. However, GPI-minus VSGs are fully protected from degradation by the cysteine protease inhibitor FMK024, a potent inhibitor of the major lysosomal protease trypanopain. Immunofluorescence of cells incubated with FMK024 demonstrates that GPI-minus VSG colocalizes with p67, a lysosomal marker. These data suggest that in the absence of a GPI anchor, VSG is mistargeted to the lysosome and subsequently degraded. Our findings indicate that GPI-dependent transport is a general feature of secretory trafficking in both stages of the life cycle. A working model is proposed in which GPI valence regulates progression in the secretory pathway of bloodstream stage trypanosomes.  相似文献   

13.
Proteins that fail to fold in the endoplasmic reticulum (ER) or cannot find a pattern for assembly are often disposed of by a process named ER-associated degradation (ERAD), which involves transport of the substrate protein across the ER membrane (dislocation) followed by rapid proteasome-mediated proteolysis. Different ERAD substrates have been shown to be ubiquitinated during or soon after dislocation, and an active ubiquitination machinery has been found to be required for the dislocation of certain defective proteins. We have previously shown that, when expressed in tobacco (Nicotiana tabacum) protoplasts, the A chain of the heterodimeric toxin ricin is degraded by a pathway that closely resembles ERAD but is characterized by an unusual uncoupling between the dislocation and the degradation steps. Since lysine (Lys) residues are a major target for ubiquitination, we have investigated the effects of changing the Lys content on the retrotranslocation and degradation of ricin A chain in tobacco protoplasts. Here we show that modulating the number of Lys residues does not affect recognition events within the ER lumen nor the transport of the protein from this compartment to the cytosol. Rather, the introduced modifications have a clear impact on the degradation of the dislocated protein. While the substitution of the two Lys residues present in ricin A chain with arginine slowed down degradation, the introduction of four extra lysyl residues had an opposite effect and converted the ricin A chain to a standard ERAD substrate that is disposed via a process in which dislocation and degradation steps are tightly coupled.  相似文献   

14.
The SulA protein is a cell division inhibitor in Escherichia coli, and is specifically degraded by Lon protease. To study the recognition site of SulA for Lon, we prepared a mutant SulA protein lacking the C-terminal 8 amino acid residues (SA8). This deletion protein was accumulated and stabilized more than native SulA in lon(+) cells in vivo. Moreover, the deletion SulA fused to maltose binding protein was not degraded by Lon protease, and did not stimulate the ATPase or peptidase activity of Lon in vitro, probably due to the much reduced interaction with Lon. A BIAcore study showed that SA8 directly interacts with Lon. These results suggest that SA8 of SulA was recognized by Lon protease. The SA8 peptide, KIHSNLYH, specifically inhibited the degradation of native SulA by Lon protease in vitro, but not that of casein. A mutant SA8, KAHSNLYH, KIASNLYH, or KIHSNAYH, also inhibited the degradation of SulA, while such peptides as KIHSNLYA did not. These results show that SulA has the specified rows of C-terminal 8 residues recognized by Lon, leading to facilitated binding and subsequent cleavage by Lon protease both in vivo and in vitro.  相似文献   

15.
It has been suggested that a thyroglobulin (Tg)-R19K missense mutation may be a newly identified cause of human congenital goiter, which is surprising for this seemingly conservative substitution. Here, we have examined the intracellular fate of recombinant mutant Tg expressed in COS-7 cells. Incorporation of the R19K mutation largely blocked Tg secretion, and this mutant was approximately 90% degraded intracellularly over a 24-h period after synthesis. Before its degradation, the Tg-R19K mutant exhibited abnormally increased association with molecular chaperones BiP, calnexin, and protein disulfide isomerase, and was unable to undergo anterograde advance from the endoplasmic reticulum (ER) through the Golgi complex. Inhibitors of proteasomal proteolysis and ER mannosidase-I both prevented ER-associated degradation of the Tg-R19K mutant and increased its association with ER molecular chaperones. ER quality control around Tg residue 19 is not dependent upon charge but upon side-chain packing, because Tg-R19Q was efficiently secreted. Whereas a Tg mutant truncated after residue 174 folds sufficiently well to escape ER quality control, introduction of the R19K point mutation blocked its secretion. The data indicate that the R19K mutation induces local misfolding in the amino-terminal domain of Tg that has global effects on Tg transport and thyroid hormonogenesis.  相似文献   

16.
Misfolded secretory and membrane proteins are known to be exported from the endoplasmic reticulum (ER) to the cytosol where they are degraded by proteasomes. When the amount of exported misfolded proteins exceeds the capacity of this degradation mechanism the proteins accumulate in the form of pericentriolar aggregates called aggresomes. Here, we show that the amyloid beta-peptide (Abeta) forms cytosolic aggregates after its export from the ER. These aggregates share several constituents with aggresomes. However, Abeta aggregates are distinct from aggresomes in that they do not accumulate around the centrosome but are distributed randomly around the nucleus. In addition to these cytosolic aggregates, Abeta forms intranuclear aggregates which have as yet not been found for proteins exported from the ER. These findings show that proteins exported from the ER to the cytosol which escape degradation by the proteasome are not necessarily incorporated into aggresomes. We conclude that several distinct aggregation pathways may exist for proteins exported from the ER to the cytosol.  相似文献   

17.
Addition of cysteine protease inhibitors to cells expressing amyloid precursor protein (APP) resulted in a >2-fold increase in appearance of the secreted extracellular domain of APP in the media. This was accounted for by increased flux of APP into the secretory pathway since protease inhibitors also caused a twofold increase in newly translated, incompletely glycosylated APP detected by pulse-labeling. These results show that a portion of newly translated APP molecules are normally rapidly degraded by cysteine protease(s) but can enter the secretory pathway when degradation is inhibited. Newly translated APP molecules are thus still competent for posttranslational processing in distal cellular compartments. Their degradation thus may not result from misfolding but merely susceptibility to an endoplasmic reticulum localized cysteine protease.  相似文献   

18.
19.
Arabinogalactan-proteins (AGPs) are highly diverse plant proteoglycans found on the plant cell surface. AGPs have large arabinogalactan (AG) moieties attached to a core-protein rich in hydroxyproline (Hyp). The AG undergoes hydrolysis by various glycoside hydrolases, most of which have been identified, whereas the core-proteins is presumably degraded by unknown proteases/peptidases secreted from fungi and bacteria in nature. Although several enzymes hydrolyzing other Hyp-rich proteins are known, the enzymes acting on the core-proteins of AGPs remain to be identified. The present study describes the detection of protease/peptidase activity toward AGP core-proteins in the culture medium of winter mushroom (Flammulina velutipes) and partial purification of the enzyme by several conventional chromatography steps. The enzyme showed higher activity toward Hyp residues than toward proline and alanine residues and acted on core-proteins prepared from gum arabic. Since the activity was inhibited in the presence of Pefabloc SC, the enzyme is probably a serine protease.  相似文献   

20.
Stearoyl-CoA desaturase (SCD) is a short-lived integral membrane protein of the endoplasmic reticulum (ER) that catalyzes the insertion of a double bond in the delta 9 position of saturated fatty acids. Its expression has been difficult in heterologous systems. In this study, recombinant adenovirus vector was used to express both wild-type (wt) and engineered forms of rat SCD in human transformed kidney cells. In the engineered form of SCD, lysyl residues at positions 33, 35, and 36 were mutated to alanine (SCD K/A). The recombinant adenovirus also contains a cDNA encoding the green fluorescent protein (GFP). The stable reporter GFP was used to analyze the efficiency of transfection and the stability of expressed SCDs. The wt SCD was unstable upon expression, whereas expression of SCD K/A resulted in the stabilization of the protein. The proteasome inhibitor MG132 did not affect the rapid degradation of expressed wt SCD, implying that proteasome is not involved in this degradation. Functional analysis of microsomes from infected cells expressing SCD K/A resulted in the formation of holoenzyme with desaturase activity. Here we report engineering a stabilized form of a rapidly degraded membrane protein for production of an active mutant form of SCD. The adenovirus transformed cells may provide a model for the study of the effects of positive SCD expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号