首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunometabolism has advanced our understanding of how the cellular environment and nutrient availability regulates immune cell fate. Not only are metabolic pathways closely tied to cell signaling and differentiation, but can induce different subsets of immune cells to adopt unique metabolic programs, influencing disease progression. Dysregulation of immune cell metabolism plays an essential role in the progression of several diseases including breast cancer (BC). Metabolic reprogramming plays a critical role in regulating T cell functions. CD8+ T cells are an essential cell type within the tumor microenvironment (TME). To induce antitumor responses, CD8+ T cells need to adapt their metabolism to fulfill their energy requirement for effective function. However, different markers and immunologic techniques have made identifying specific CD8+ T cells subtypes in BC a challenge to the field. This review discusses the immunometabolic processes of CD8+ T cell in the TME in the context of BC and highlights the role of CD8+ T cell metabolic changes in tumor progression.  相似文献   

2.
T cells are required for an effective adaptive immune response. The principal function of T cells is to promote efficient removal of foreign material by identifying and mounting a specific response to nonself. A decline in T cell function in aging is thought to contribute to reduced response to infection and vaccination and an increase in autoimmunity. This may in part be due to the age-related decrease in naïve CD4+ T cells and increase in antigen-experienced CD4+ T cells, loss of redox homeostasis, and impaired metabolic switching. Switching between subsets is triggered by the integration of extracellular signals sensed through surface receptors and the activation of discrete intracellular metabolic pathways. This article explores how metabolic programming and loss of redox homeostasis during aging may contribute to age-associated changes in T cell phenotype and function.  相似文献   

3.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

4.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

5.
Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 −/− CD4+ T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 −/− CD4+ T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 −/− CD4+ T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 −/− CD4 + T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 −/− CD4+ T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 −/− CD4+ T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.  相似文献   

6.
The susceptibility of human CD4+ and CD8+ T cells to senesce differs, with CD8+ T cells acquiring an immunosenescent phenotype faster than the CD4+ T cell compartment. We show here that it is the inherent difference in mitochondrial content that drives this phenotype, with senescent human CD4+ T cells displaying a higher mitochondrial mass. The loss of mitochondria in the senescent human CD8+ T cells has knock‐on consequences for nutrient usage, metabolism and function. Senescent CD4+ T cells uptake more lipid and glucose than their CD8+ counterparts, leading to a greater metabolic versatility engaging either an oxidative or a glycolytic metabolism. The enhanced metabolic advantage of senescent CD4+ T cells allows for more proliferation and migration than observed in the senescent CD8+ subset. Mitochondrial dysfunction has been linked to both cellular senescence and aging; however, it is still unclear whether mitochondria play a causal role in senescence. Our data show that reducing mitochondrial function in human CD4+ T cells, through the addition of low‐dose rotenone, causes the generation of a CD4+ T cell with a CD8+‐like phenotype. Therefore, we wish to propose that it is the inherent metabolic stability that governs the susceptibility to an immunosenescent phenotype.  相似文献   

7.
To determine whether changes in sphingolipid composition are associated with age-related immune dysfunction, we analyzed the core sphingolipidome (i.e., all of the metabolites through the first headgroup additions) of young and aged CD4+ T cells. Since sphingolipids influence the biophysical properties of membranes, we evaluated the compositions of immune synapse (IS) and non-IS fractions prepared by magnetic immuno-isolation. Broadly, increased amounts of sphingomyelins, dihydrosphingomyelins and ceramides were found in aged CD4+ T cells. After normalizing for total sphingolipid content, a statistically significant decrease in the molar fraction of glucosylceramides was evident in both the non-IS and IS fractions of aged T cells. This change was balanced by less dramatic increases in the molar fractions of sphingomyelins and dihydrosphingomyelins in aged CD4+ T cells. In vitro, the direct or enzymatic enhancement of ceramide levels decreased CD4+ T cell proliferation without regard for the age of the responding T cells. In contrast, the in vitro inhibition of glucosylceramidase preferentially increased the proliferation of aged CD4+ T cells. These results suggest that reductions in glucosylceramide abundance contribute to age-related impairments in CD4+ T cell function.  相似文献   

8.
The metabolic cross-talk between cancer cells and T cells dictates cancer formation and progression. These cells possess metabolic plasticity. Thus, they adapt their metabolic profile to meet their phenotypic requirements. However, the nutrient microenvironment of a tumor is a very hostile niche in which these cells are forced to compete for the available nutrients. The hyperactive metabolism of tumor cells often outcompetes the antitumorigenic CD8+ T cells while promoting the protumorigenic exhausted CD8+ T cells and T regulatory (Treg) cells. Thus, cancer cells elude the immune response and spread in an uncontrolled manner. Identifying the metabolic pathways necessary to shift the balance from a protumorigenic to an antitumorigenic immune phenotype is essential to potentiate antitumor immunity.  相似文献   

9.
An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs), recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs) as stimulators of CD8+ and CD4+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ) enzyme-linked immunospot (ELISPOT) assay by using isolated CD8+ and CD4+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1)-specific IFN-γ producing CD4+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4+ T cells was significantly correlated with that of CD8+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001). To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs) samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4+ T cell responses showed more significant changes than CD8+ T cell responses. CD8+ and CD4+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4) and Th17 (IL-17a) cytokines were not detected. CD4+ T cells secreted significantly higher cytokine levels than did CD8+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.  相似文献   

10.
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens.  相似文献   

11.
Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2) regulates fatty acid oxidation (FAO) by inhibiting carnitine palmitoyltransferase 1 (CPT1), a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.  相似文献   

12.
Apart from the deletion of autoreactive T cells in the thymus, various methods exist in the peripheral immune system to control specific human immune responses to self-antigens. One of these mechanisms involves regulatory T cells, of which CD4+CD25+ T cells are a major subset. Recent evidence suggests that CD4+CD25+ T cells have a role in controlling the development of autoimmune diseases in animals and in humans. The precise delineation of the function of CD4+CD25+ T cells in autoimmune inflammation is therefore of great importance for the understanding of the pathogenesis of autoimmune diseases. Moreover, the ability to control such regulatory mechanisms might provide novel therapeutic opportunities in autoimmune disorders such as rheumatoid arthritis. Here we review existing knowledge of CD4+CD25+ T cells and discuss their role in the pathogenesis of rheumatic diseases.  相似文献   

13.
14.
15.
Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow’s 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-γ secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment.  相似文献   

16.
FoxP3 + CD4 + regulatory T cells (Tregs) are important mediators of peripheral immune tolerance, acting via multiple mechanisms to suppress cellular immunity including antitumor responses. Although therapeutic strategies have been proposed to deplete Tregs in patients with breast cancer and other malignancies, dynamic changes in the Treg compartment as a function of stage and treatment of breast cancer remain poorly understood. Here, we evaluated peripheral blood CD4+ T cells and FoxP3+ CD4+ T cells from 45 patients with early or late stage breast cancer and compared percentages, absolute counts, and Treg function to those from healthy volunteers (HV) of comparable age. Patients having completed adjuvant chemotherapy and patients with metastatic cancer exhibited significantly lower absolute CD4 counts and significantly higher percentages of FoxP3+ CD4+ T cells. In contrast, the absolute counts of circulating FoxP3+ CD4+ T cells did not differ significantly among early stage patients, late stage patients, or HV. Functionally, FoxP3+ CD4+ T cells from all donor groups similarly expressed CTLA-4 and failed to secrete IFN-γ in response to stimulation. Thus, although Tregs comprise an increased percentage of circulating CD4+ T cells in patients with metastatic breast cancer and patients in remission after completing the adjuvant chemotherapy, the systemic Treg pool, as measured by absolute counts, appears relatively constant regardless of disease stage or treatment status. Total CD4+ T cell counts are not constant, however, suggesting that homeostatic mechanisms, or susceptibility to cytotoxic or malignant insults, fundamentally differ for regulatory and non-regulatory CD4+ T cells.  相似文献   

17.
Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR) is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+ is poorly understood. To evaluate the influence of TCR sequence variation on CD4+/CD8+ lineage commitment, we sequenced rearranged TCRs for both α and β chains in naïve T cells isolated from healthy donors and investigated gene segment usage and recombination patterns in CD4+ and CD8+ T-cell subsets. Our data demonstrate that most V and J gene segments are strongly biased in the naïve CD4+ and CD8+ subsets with some segments increasing the odds of being CD4+ (or CD8+) up to five-fold. These V and J gene associations are highly reproducible across individuals and independent of classical HLA genotype, explaining ~11% of the observed variance in the CD4+ vs. CD8+ propensity. In addition, we identified a strong independent association of the electrostatic charge of the complementarity determining region 3 (CDR3) in both α and β chains, where a positively charged CDR3 is associated with CD4+ lineage and a negatively charged CDR3 with CD8+ lineage. Our findings suggest that somatic variation in different parts of the TCR influences T-cell lineage commitment in a predominantly additive fashion. This notion can help delineate how certain structural features of the TCR-peptide-HLA complex influence thymic selection.  相似文献   

18.
This study is sought to determine the physiological mechanisms by which exosomes-encapsulated TIM-3 derived from melanoma cells might mediate CD4+ T cell immune function and macrophage M2 polarization in melanoma. Initially, exosomes were isolated from the human skin-derived melanoma cell line MV3for analysis of TIM-3 expression pattern. Next, the exosomes sourced from MV3 cells manipulated with sh-TIM-3 were co-incubated with CD4+ T cells to detect CD4+ T cell proliferation and MV3 cell migration and invasion, to observe the macrophage M2 polarization, and to determine levels of several EMT-related factors. Finally, melanoma nude mouse models were established to study the in vivo modulatory effects of TIM-3 from MV3 cells-derived exosomes. MV3 cells-derived exosomes inhibited CD4+ T cell immune function and promoted macrophage M2 polarization in melanoma. Our results revealed the abundance of TIM-3 in MV3 cells-derived exosomes. Of importance, silencing of TIM-3 shuttled by MV3 cells-derived exosomes improved CD4+ T cell immune function and inhibited macrophage M2 polarization to attenuate the growth and metastasis of melanoma cells. Collectively, MV3 cells-derived exosomes-loaded TIM-3 suppressed CD4+ T cell immune function and induced macrophage M2 polarization to improve occurrence and development of melanoma, therefore providing us with a potential therapeutic target for effectively combating melanoma.  相似文献   

19.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   

20.
Surgery is the primary therapeutic strategy for most solid tumours; however, modern oncology has established that neoplasms are frequently systemic diseases. Being however a local treatment, the mechanisms through which surgery plays its systemic role remain unknown. We have investigated the influence of cytoreduction on the immune system of primary and recurrent ovarian cancer. All ovarian cancer patients show an increase in CD4+CD25+FOXP3+ circulating cells (CD4 Treg). CD4/CD8 ratio is increased in primary tumours, but not in recurrent neoplasms. Primary cytoreduction is able to increase circulating CD4 and CD8 effector cells and decrease CD4 naïve T cells. CD4+ Treg cells rapidly decreased after primary tumour debulking, while CD8+CD25+FOXP3+ (CD8 Treg) cells are not detectable in peripheral blood. Similar results on CD4 Treg were observed with chemical debulking in women subjected to neoadjuvant chemotherapy. CD4 and CD8 Treg cells are both present in neoplastic tissue. Interleukin (IL)‐10 serum levels decrease after surgery, while no changes are observed in transforming growth factor‐β1 and IL‐6 levels. Surgically induced reduction of the immunosuppressive environment results in an increased capacity of CD8+ T cells to respond to the recall antigens. None of these changes was observed in patients previously subjected to chemotherapy or affected by recurrent disease. In conclusion, we demonstrate in ovarian cancer that primary debulking is associated with a reduction of circulating Treg and an increase in CD8 T‐cell function. Debulking plays a beneficial systemic effect by reverting immunosuppression and restoring immunological fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号