首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp(Et)dT, was identified as a product from reaction of DNA with N-ethyl-N-nitrosourea, by procedures parallel to those reported previously for the methyl homologue produced by N-methyl-N-nitrosourea. 2. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by these carcinogens and by dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. Relative reactivity of the phosphodiester group was lowest towards dimethyl sulphate, the least electrophilic of the reagents used, and was highest towards N-ethyl-N-nitrosourea, the most electrophilic reagent. 3. The nature of the alkyl group transferred also influenced reactivity of the phosphodiester site, since this site was relatively more reactive towards ethylation than would be predicted simply from the known Swain-Scott s values of the alkylating agents. It was therefore suggested that the steric accessibility of the weakly nucleophilic phosphodiester group on the outside of the DNA macromolecule favours its reaction with ethylating, as opposed to methylating, reagents. 4. Taking a value of the Swain-Scott nucleophilicity (n) of 2.5 for an average DNA nucleotide unit [Walles & Ehrenberg (1969) Acta Chem. Scand. 23, 1080-1084], a value of n of about 1 for the phosphodiester group was deduced, and this value was found to be 2-3 units less than that for the N-7 atom of guanine in DNA. 5. The reactivity of DNA overall was markedly high towards the alkylnitrosoureas, despite their relatively low s values. This was ascribed to an electrostatic factor that favoured reaction of the negatively charged polymer with alkyldiazonium cation intermediates.  相似文献   

2.
1. Methods were developed for analysis of alkylpurines, O2-alkylcytosines, and representative phosphotriesters [alkyl derivatives of thymidylyl(3'-5')thymidine], in DNA alkylated in vivo, using high-pressure liquid chromatography. 2. The patterns of alkylation products in DNA in vivo at short times were closely similar to those found for reactions in vitro. Alkylation by the nitrosoureas was complete in vivo within 1 h, but with ethyl methanesulphonate was maximal at 2--4h. 3. The time course of persistence of alkylation products in vivo was determined for several tissues. In addition to the rapid loss of 3- and 7-alkyladenines reported previously for all tissues, a relatively rapid loss of O6-alkylguanines from DNA of liver was found which was more rapid at lower doses. In brain, lung and kidney, excision of O6-alkylguanine was much less marked, but was not entirely excluded by the data. In thymus, bone marrow and small bowel, all alkylated bases were lost with half-lives of 12--24h, at non-cytotoxic doses of alkylation. 4. No evidence for any marked excision of other minor products from alkylated DNA in vivo was found; thus 1-methyladenine, O2-ethylcytosine (found in appreciable amount only with N-ethyl-N-nitrosourea), 3-methylguanine, and dTp(Alk)dT persisted in alkylated DNA, including DNA of liver. 5. The induction of thymic lymphoma was determined over the range of single doses by intraperitoneal injection up to about 60% of the LD50 values, and related to the extent of alkylation of target tissues thymus and bone marrow. With N-methyl-N-nitrosourea over 90% tumour yield was attained at 60 mg/kg, and with N-ethyl-N-nitrosourea up to 52% at 240 mg/kg, but with ethyl methanesulphonate at up to 400 mg/kg only a few per cent of tumours were obtained. 6. The carcinogenic effectiveness of the agents was positively correlated with the extents of alkylation of guanine in DNA of target tissues at the O-6 atom. On the basis that at doses giving equal carcinogenic response these extents of alkylation would be equal, the chemical analyses showed that the ratio of equipotent doses to that for N-methyl-N-nitrosourea would be, for N-ethyl-N-nitrosourea, 5.3 for ethyl methanesulphonate about 21, and for methyl methanesulphonate [Frei & Lawley (1976) Chem.-Biol. Interact. 13, 215--222] about 144. These predictions were in reasonably good agreement with the observed dose-response data for these agents.  相似文献   

3.
Survival and reversion to T4r+ of bacteriophage T4rII AP72 after treatment with ethyl methanesulphonate at 37 degrees or 45 degrees C were studied in relation to the extent and mode of alkylation of purines in DNA of ethylated bacteriophage. A single-burst technique was used for reversion assay. Survival was lower at 45 degrees C than at 37 degrees C at a given extent of ethylation of bacteriophage DNA, confirming that events subsequent to ethylation, probably depurinations, are the main cause of decreased survival. Reversion was positively correlated (approximately linearly except at low extents at 37 degrees C) with ethylation of bacteriophage DNA, showing that ethylation itself causes mutation. Following the concept that reversion results from G-C leads to A-T transition at a single site (Krieg, 1963a,b) and the suggestion that O6-alkylation of guanine generates the miscoding base (Loveless, 1969), it was calculated that about one-third of induced O6-ethylguanines at this site would miscode to induce mutation.  相似文献   

4.
Abstract— Alkylation of rat brain nucleic acids in vivo was measured after a single intravenous injection (1 mmol/kg body wt.) of N -[14C]methyl- N -nitrosourea and [14C]methyl methanesulphonate. The main product with both compounds was 7-methylguanine, The extents of methylation on this position in DNA and RNA were similar with methylnitrosourea but methyl methanesulphonate produced twice as much 7-methylguanine in DNA as in cytoplasmic RNA. Brain DNA from rats treated with labelled methylnitrosourea contained radioactive O 6-methylguanine, accounting for about 12 per cent of the radioactivity present as 7-methylguanine and cytoplasmic RNA contained about half this amount of O 6-methylguanine. Neither DNA nor cytoplasmic RNA from methyl methanesulphonatetreated rats contained any detectable O 6-methylguanine. Treatment with both compounds resulted in varying small amounts of methylation of other nucleic acid bases including 1-methyladenine, 3-methyladenine and 3-methylcytosine. The possible relevance of alkylation of brain nucleic acids to the induction of brain tumours is discussed.  相似文献   

5.
1. Rats fed on a protein-free high-carbohydrate diet for 7 days metabolized dimethylnitrosamine at only 55% the rate of rats fed on a commercial diet. 2. Dimethylnitrosamine was metabolized by liver slices from rats fed on the protein-free diet at less than half the rate attained by slices from rats fed on a commercial diet. But kidney slices from these rats metabolized dimethylnitrosamine at the same rate as kidney slices from rats on a commercial diet. 3. Methylation by dimethylnitrosamine (70mg/kg body wt.) of N-7 of guanine of the liver RNA and DNA of rats fed on a protein-free diet was only slightly higher than in rats fed on a normal diet given 27mg/kg body wt. In contrast, the methylation by dimethylnitrosamine of guanine in kidney nucleic acids of these rats was three times that in the rats fed on a normal diet. 4. In rats fed on a protein-free diet the incidence of kidney tumours produced by a single dose of dimethylnitrosamine is increased.  相似文献   

6.
L Sun  B Singer 《Biochemistry》1975,14(8):1795-1802
The sites and extent of ethyl products of neutral ethylation of HeLa cell DNA by [14-C]diethyl sulfate, [14-C]ethyl methanesulfonate, and [14-C]ethylnitrosourea have been determined in vitro and in vivo, and found to differ significantly depending on the ethylating agents. Diethyl sulfate and ethyl methanesulfonate ethylate the bases of HeLa cell DNA in the following order: 7-ethylguanine greater than 3-ethyladenine greater than 1-ethyladenine, 7-ethyladenine greater than 3-ethylguanine, 3-ethylcytosine, O-6-ethylguanine. Ethyl bases accounted for 84-87% of the total ethyl groups associated with HeLa cell DNA. Ethylnitrosourea, in contrast, has particular affinity for the O-6 position of guanine. It ethylates the bases of HeLa cell DNA in the following order: O-6-ethylguanine, 7-ethylguanine greater than 3-ethyladenine greater than 3-ethylguanine, 3-ethylthymine greater than 1-ethyladenine, 7-ethyladenine, 3-ethylcytosine. Ethylation of the bases only accounts for 30% of the total ethylation in the case of ethylnitrosourea. The remaining 70% of the [14-C]ethyl groups, introduced in vivo and in vitro, are in the form of phosphotriesters which after perchloric acid hydrolysis are found as [14-CA1ethanol and [14-C]ethyl phosphate. In contrast, phosphotriesters amounted to only 8-20% of total ethylation in in vivo or in vitro diethyl sulfate and ethyl methanesulfonate treated HeLa cell DNA, and 25% of the total methylation in in vitro methylnitrosourea treated HeLa cell DNA. Alkylation at the N-7 and N-3 positions of purines in DNA destabilizes the glycosidic linkages. Part of 7-ethylguanine and 3-ethyladenine are found to be spontaneously released during the ethylation reaction. Incorporation of the 14-C of the alkylating agents into normal DNA bases of HeLa cells can be eliminated by performing the alkylations, in the presence of cytosine arabinoside, for 1 hr.  相似文献   

7.
DNA adduct formation in various organs of mice was determined after i.p. injection with the ethylating agents N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), and diethyl sulfate (DES). The potency of the 3 chemicals to react either at the O6 position of guanine or at the N-7 position of guanine was related to their potency to induce mutations in the specific-locus assay of the mouse. ENU, which produces relatively high levels of O-alkylations (O6-ethylguanine), is primarily mutagenic in spermatogonia of the mouse, whereas EMS and DES, which produce relatively high levels of N-alkylations (7-ethylguanine) in DNA, are much more mutagenic in post-meiotic stages of male germ cells. The relationship between exposure to ENU and the dose, determined as O6-ethylguanine per nucleotide in testicular DNA, is non-linear. However, the relationship between dose and mutation induction in spermatogonia by ENU appears to be linear, which is expected if O6-ethylguanine is the major mutagenic lesion. The relatively high mutagenic potency of EMS and DES in the late stages of spermatogenesis is probably due to the accumulation of apurinic sites which generate mutations after fertilization. A comparison of mutation induction by ENU in spermatogonia and mutation induction in cultured mammalian cells indicates that about 10 O6-ethylguanine residues were necessary in the coding region of a gene to generate a mutation.  相似文献   

8.
Tumour induction by low molecular weight alkylating agents   总被引:2,自引:0,他引:2  
Low molecular weight alkylating carcinogens, such as nitroso compounds, alkylate guanine of DNA to 7-alkylguanine, but the amount of this product correlates poorly with tumour induction. Loveless postulated that a minor product of alkylation, O-(6)-alkylguanine, may be responsible for mutagenesis and carcinogenesis. He showed that methyl methanesulphonate (MMS) does not produce O-(6)-methylguanine from deoxyguanosine, and in the present study it failed to induce thymic lymphomas or pulmonary adenomas in inbred Swiss mice. Loveless gave evidence that ethyl methanesulphonate (EMS), methylnitrosourea (MNU) and ethylnitrosourea (ENU) did produce O-(6)-alkylguanine, and all three induced pulmonary adenomas in the present study. It has also been shown that both of the alkylnitrosoureas induced thymic lymphomas but ethyl methanesulphonate did not.  相似文献   

9.
46BR is a fibroblast cell strain established from an individual with hypogammaglobulinaemia. The cells are unique in showing hypersensitivity to the lethal effects of a wide range of DNA-damaging agents. Thus they are hypersensitive to gamma- and 254-nm UV-irradiation and show a limited capacity to repair potentially lethal gamma-irradiation damage when compared with fibroblasts from normal individuals. A slight hypersensitivity to mitomycin C was also revealed but we were not able to discriminate 46BR from normals with 4-nitroquinoline oxide. The cells were hypersensitive to the alkylating agents, dimethyl sulphate, methyl methanesulphonate, ethyl methanesulphonate, N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea but not N-ethyl-N-nitrosourea. A consideration of the spectra of DNA lesions produced by these alkylating agents together with the sensitivity to ionising radiation and mitomycin C suggests that 46BR cells are defective in a repair step that is common to all agents. We suggest that the cells are defective in DNA polymerisation or ligation. Support for this suggestion comes from the absence of any hypersensitivity to N-ethyl-N-nitrosourea since its major reaction products are not removed by excision pathways that require polymerisation and ligation.  相似文献   

10.
The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds.  相似文献   

11.
The frequency of reversions induced in Escherichia coli K-12 trpA58 by any of five different monofunctional alkylating agents increased as the growth rate of the organism was raised prior to mutagen treatment. The increase in mutation frequency did not correlate with growth rate-dependent changes in cell area or total cellular protein and DNA. After treatment of cells with N-methyl-N-nitrosourea (MNUA), no growth rate-dependent change was observed in the total DNA alkylation or percentage of O6-methylguanine present in the DNA extracted. The frequency of reversions induced by one mutagen, methyl methanesulphonate (MMS), increased in proportion to the average number of trpA gene copies per cell, whereas the frequency of reversions induced by the other compounds was dependent on the average number of chromosome replicating forks per cell. This difference was attributed to the different ratios of DNA base alkylation products observed, formed after treatment with MMS, an SN2-type reagent, or after treatment with the SN1-type reagents ethyl methanesulphonate (EMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), MNUA and N-ethyl-N-nitrosourea (ENUA). Possible reasons for the dependence of mutation frequency on the number of replicating forks per cell are discussed.  相似文献   

12.
The biological inactivation of bacteriophage R17 by ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENUA) has been studied. At the mean lethal dose for the first compound 8 moles ethyl are bound/mole RNA and with the nitroso compound 3.5 moles ethyl are bound. Analysis of the amounts of the different ethylated derivatives formed shows that the toxicity of the sulphonate can be accounted for by the formation of 3-ethylcytosine, O6-ethylguanine, 1-ethyladenine and chain breaks produced on the hydrolysis of ethyl phosphotriesters. With the nitroso derivative on the other hand, the sum of chain breaks and of bases alkylated on a position involved in specific hydrogen bonding between base pairs only accounts for 65% of the observed toxicity. The possibility that 3-ethyladenine may constitute a lethal lesion is discussed.  相似文献   

13.
DNA repair is essential for maintaining the integrity of the genetic material, and a number of DNA repair mechanisms have been fairly well characterized for the nuclear DNA of eukaryotic cells as well as prokaryotes. However, little is known about DNA repair in mitochondria. Using highly sensitive immunoanalytical methods to detect specific DNA alkylation products, we found active removal of O6-ethyl-2'-deoxyguanosine (O6-EtdGuo) from rat liver mitochondrial DNA after pulse-exposure to N-ethyl-N-nitrosourea in vivo. In the kidney, O6-EtdGuo was removed from mitochondrial DNA with moderate efficiency, but nearly no removal was observed from the DNA of brain mitochondria. Among the rat tissues examined, the kinetics of O6-EtdGuo elimination from mitochondrial DNA was very similar to the kinetics of removal from nuclear DNA. O4-Ethyl-2'-deoxythymidine, another premutagenic DNA ethylation product, was stable in both mitochondrial and nuclear DNA of rat liver.  相似文献   

14.
1. N[(14)C]-Methyl-N-nitrosourea, [(14)C]dimethylnitrosamine, [(14)C]dimethyl sulphate and [(14)C]methyl methanesulphonate were injected into rats, and nucleic acids were isolated from several organs after various time-intervals. Radioactivity was detected in DNA and RNA, partly in major base components and partly as the methylated base, 7-methylguanine. 2. No 7-methylguanine was detected in liver DNA from normal untreated rats. 3. The specific radioactivity of 7-methylguanine isolated from DNA prepared from rats treated with [(14)C]dimethylnitrosamine was virtually the same as that of the dimethylnitrosamine injected. 4. The degree of methylation of RNA and DNA produced in various organs by each compound was determined, and expressed as a percentage of guanine residues converted into 7-methylguanine. With dimethylnitrosamine both nucleic acids were considerably more highly methylated in the liver (RNA, about 1% of guanine residues methylated; DNA, about 0.6% of guanine residues methylated) than in the other organs. Kidney nucleic acids were methylated to about one-tenth of the extent of those in the liver, lung showed slightly lower values and the other organs only very low values. N-Methyl-N-nitrosourea methylated nucleic acids to about the same extent in all the organs studied, the amount being about the same as that in the kidney after treatment with dimethylnitrosamine. In each case the RNA was more highly methylated than the DNA. Methyl methanesulphonate methylated the nucleic acids in several organs to about the same extent as N-methyl-N-nitrosourea, but the DNA was more highly methylated than the RNA. Dimethyl sulphate, even in toxic doses, gave considerably less methylation than N-methyl-N-nitrosourea in all the organs studied, the greatest methylation being in the brain. 5. The rate of removal of 7-methylguanine from DNA of kidneys from rats treated with dimethylnitrosamine was compared with the rate after treatment of rats with methyl methanesulphonate. No striking difference was found. 6. The results are discussed in connexion with the organ distribution of tumours induced by the compounds under study and in relation to the possible importance of alkylation of cellular components for the induction of cancer.  相似文献   

15.
The ethylation of rat liver DNA by a single dose of diethylnitrosamine and the stability of O6-ethylguanine in vivo were studied. Whereas the dose response relations for 7-ethylguanine, 3-ethyladenine, the pyrimidine oligonucleotide fraction containing ethylphosphotriesters and an as yet unreported Fraction X corresponded with a first-order process of formation, the results suggested a steeper dose-response relation for O6-ethylguanine formation. In the dose range 0.5–10 mg/kg diethylnitrosamine, the O6-ethylguanine/7-ethylguanine ratio increased progressively with the dose, under conditions in which the in vivo stability (removal rate) of O6-ethylguanine was not affected. This led to the hypothesis that the formation of O6-ethylguanine, but not that of the other ethylated products, was facilitated by some dose-dependent process or condition. Support for this view was obtained by the markedly enhanced O6-[14C]ethylguanine content of DNA following pretreatment of the rats with non-radioactive diethylnitrosamine which was allowed to be metabolized completely prior to the administration of a tracer dose of [14C]diethylnitrosamine. Since neither the amounts of the other ethylation products nor the stability of the labelled O6-ethylguanine were affected by the pretreatment, changes in carcinogen metabolism or excision rate could be excluded as causes of the observed increase in O6-ethylguanine content. The half-life of the condition that facilitates O6-ethylguanine formation following pretreatment, may approximate that of O6-ethylguanine itself. The nature of the facilitating process and the possible role of O6-alkylguanine in hepatocarcinogenesis are discussed.  相似文献   

16.
Ethylation of DNA by diethyl sulfate gave 7-ethylguanine as the major product. Dimethyl sulfate was much more reactive than diethyl sulfate in forming 7-alkylguanine. The hydrodynamic properties of DNA did not change as a direct consequence of ethylation. On incubation at 37 °C, the viscosity of ethylated DNA decreased at a rate similar to that of methylated DNA. The rate of depurination of 7-ethylguanine from ethylated DNA was the same as that of 7-methylguanine from methylated DNA. These results demonstrate that ethyl groups have identical effects as methyl groups on the secondary structure and stability of DNA.  相似文献   

17.
A single injection of dimethylnitrosamine (DMN), 12.0-15.6 mg-kg, given to 100 g female rats 24 h after partial hepatectomy, induced hepatocellular carcinoma. No animals receiving DMN without partial hepatectomy developed liver carcinomas. Previous evidence had suggested that the incidence of tumours was highest when DMN was administered during the wave of DNA replication which follows partial hepatectomy. The present experiments made this suggestive evidence statistically significant. A single treatment with diethylnitrosamine (DEN) induced liver cell cancer when given to intact or to partially hepatectomised rats. No tumors developed when another alkylating carcinogen, methyl methanesulphonate (MMS), was administered after partial hepatectomy. The significance of these results in relation to the mechanism of initiation of carcinogenesis is discussed.  相似文献   

18.
The inactivation and mutation (to r phenotype) of extracellular coliphage T4 wild-type by the monofunctional alkylating agents N-methyl- and N-ethyl-N-nitrosourea and isopropyl methanesulphonate were investigated. The rate and extent of change in phage infectivity observed during the post-treatment period were found to correlate with what is known of the mechanisms by which these agents react in vitro. Loss of phage infectivity was found to occur during the period following treatment with these agents, but that resulting from treatment with isopropyl methanesulphonate was preceded, in the first 24 to 48 h, by a recovery of infectivity. This suggested that changes in phage infectivity occurring after treatment with monofunctional alkylating agents are resultant of various processes which diversely promote loss and recovery of infectivity. The mutagenicity of N-methyl-N-nitrosourea was similar to that of its ethyl homologue at a level of phage survival of 4 x 10-3, but less than that of isopropyl methanesulphonate. At a level of survival of 3 x 10-2 ethyl methanesulphonate was a mutagenic as its isopropyl homologue, but methyl methanesulphonate was only slightly if at all mutagenic. These results could not be correlated with the compounds' reaction mechanisms. The efficiency of isopropyl methanesulphonate (compared with its toxicity to phage) was found to decrease as the severity of the dose was increased.  相似文献   

19.
The extent of biological inactivation and of the degradation of the RNA after reaction of bacteriophage R17 with ethyl methanesulphonate, isopropyl methanesulphonate and N-ethyl-N-nitrosourea was studied. Formation of breaks in the RNA chain probably results from hydrolysis of phosphotriesters formed in the alkylation reactions. Near neutral pH the ethyl and isopropyl phosphotriesters are sufficiently stable for the kinetics of the hydrolysis reaction to be followed. Results indicate that the rate of hydrolysis increases rapidly as the pH is raised. The evidence shows that a phosphotriester group does not itself constitute a lethal lesion. The extent of phosphotriester formation by the different agents is discussed in terms of reaction mechanism.  相似文献   

20.
The stability of methyl and ethyl phosphotriesters in DNA in vivo   总被引:3,自引:0,他引:3  
C57BL male mice were injected with N-methyl-N-nitrosourea (MNUA) or N-ethyl-N-nitrosourea (ENUA) and the concentration of alkyl phosphotriesters in the DNA of lung, liver, brain, kidney, spleen and thymus determined from the extent of degradation induced in isolated DNA by alkali. The same total dose of reagent was given either as a single injection (i.p.) or by weekly injections carried out over 5-20 weeks. Methyl phosphotriesters induced in liver, lung and kidney by the single injection were lost with a half-life of about 7 days, in brain the loss was more rapid, t1/2 = 2-3 days. During the multiple injections the observed t1/2 was 16 days. Ethyl phosphotriesters formed in the DNA of lung, liver, kidney and brain were much more stable than the methyl derivatives, t1/2 = 10-15 weeks. Phosphotriesters formed in the DNA of spleen and thymus disappeared very quickly after the single injection presumably as a result of dilution due to DNA replication. No accumulation of phosphotriesters occurred in the DNA of these tissues during the multiple injections. The general pattern of the results suggests that phosphotriesters are not excised by cellular repair systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号