首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repair-proficient murine fibroblasts transfected with the denV gene of bacteriophage T4 repaired 70-80% of pyrimidine dimers within 24 h after exposure to 150 J/m2 ultraviolet radiation (UVR) from an FS-40 sunlamp. Under the same conditions, control cells repaired only about 20% of UVR-induced pyrimidine dimers. After UVR exposure, both control and denV-transfected cells exhibited some degree of DNA-synthesis inhibition, as determined by flow cytometric analysis of cell-cycle kinetics in propidium iodide-stained cells. DenV-transfected cells had a longer and more profound S phase arrest than control cells, but both control and denV-transfected cells had largely recovered from UVR effects on cell-cycle kinetics by 48 h after UVR exposure. Inhibition of DNA synthesis by UVR was also measured by determining post-UVR incorporation of bromodeoxyuridine (BrdU). The amount of BrdU incorporated was quantitated by determining with flow cytometry the quenching of Hoechst dye 33342 by BrdU incorporated in cellular DNA. DenV-transfected cells showed more marked inhibition of BrdU incorporation after low fluences of UVR than control cells. Differences between denV-transfected and control cells in cell-cycle kinetics following UVR exposure may be related to differences in mechanisms of repair when excision repair of pyrimidine dimers is initiated by endonuclease V instead of cellular repair enzymes.  相似文献   

2.
3.
Laboratory experiments examining the effects of ultraviolet radiation (UVR, 290-400 nm) on DNA damage were carried out using the embryos of three species of sea urchins from different habitats; Strongylocentrotus droebachiensis from the Gulf of Maine, Sterechinus neumayeri from the Antarctic, and Evechinus chloroticus from New Zealand. All three species exhibited significant amounts of accumulated DNA damage, measured as cyclobutane pyrimidine dimers (CPD) photoproducts, when exposed to UVR in the laboratory. Biological weighting functions (BWFs) revealed that S. neumayeri has significantly higher sensitivity to UVR-induced DNA damage across most of the UVR spectrum compared to the other two species, and all species were observed to have weightings in the ultraviolet-A (UVA, 320-400 nm) portion of the spectrum. The increased sensitivity to ultraviolet-B (290-320 nm) and UVA in S. neumayeri is correlated with the lowest concentration of UVR absorbing compounds observed in the embryos of the three species of urchin used in this study. Sea urchin embryos and larvae in the respective habitats of the species tested are known to occur within 5 m of the surface of the ocean where both UVB and UVA wavelengths occur. Solar irradiances of UVR at a depth of 5 m, weighted using the urchin DNA damage BWFs, show that E. chloroticus receives the greatest amount of biologically effective UVR despite having the lowest wavelength dependent weightings for DNA damage when compared to the other two species.  相似文献   

4.
Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts.  相似文献   

5.
Inorganic arsenic enhances skin tumor formation when combined with other carcinogens including ultraviolet radiation (UVR). The inhibition of DNA damage repair by arsenic has been hypothesized to contribute to the cocarcinogenic activities of arsenic observed in vivo. Cyclobutane pyrimidine dimers (CPDs) are an important mutagenic UVR photoproduct and implicated in the genesis of nonmelanoma skin cancer. The current study demonstrates that low concentrations of arsenite (As(III)) inhibit UVR-induced CPD repair in a human keratinocyte cell line via nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Following As(III) treatment, NO production and iNOS expression are elevated. Little is known about regulation of iNOS by As(III) and further investigations indicated that p38 mitogen-activated protein kinase (p38 MAPK) and NF-kappaB are required for As(III) induction of iNOS expression. This As(III)-stimulated signaling cascade was involved in inhibition of UVR-induced CPD repair as disruption of p38 MAPK activity and NF-kappaB nuclear translocation counteracted the effects of As(III) on CPD repair. Selective inhibition of iNOS ameliorated As(III) inhibition of CPD repair, thereby suggesting that iNOS is a downstream mediator of As(III) activity. These findings provide evidence that an As(III)-stimulated signal transduction cascade culminating in elevated iNOS expression and NO generation is an underlying mechanism for inhibition of UVR-induced DNA damage repair by arsenic.  相似文献   

6.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)-induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR-induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR-induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss-of-function MC1R, regardless of their MC or EC, sustained more UVR-induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR-induced DNA damage in melanocytes.  相似文献   

7.
We tested the hypothesis that DNA is a target for solar-simulated ultraviolet radiation (ssUVR)-induced suppression of the reactivation of memory immunity in humans. T4N5 liposomes contain the DNA repair enzyme T4 endonuclease V. This cleaves DNA at the site of ultraviolet radiation (UVR)-induced cyclobutane pyrimidine dimers (CPD), initiating DNA repair. It has previously been used to show that CPDs are a key molecular trigger for UVR-induced immunosuppression in mice. To determine whether CPD formation is involved in UVR immunosuppression in humans, nickel-allergic volunteers were irradiated with a range of doses of ssUVR. T4N5 or empty liposomes were then applied after irradiation. Nickel-induced recall immunity was assessed by reflectance spectrometry. T4N5 liposomes inhibited immunosuppression and prevented ssUVR from reducing the number of epidermal dendritic cells. T4N5 liposomes also reduced macrophage infiltration into irradiated epidermis. These studies show that enhanced removal of CPDs from human skin protects from immunosuppression, hence demonstrating that these photolesions are an important molecular event in ssUVR-induced immunosuppression in humans. CPDs also triggered loss of dendritic cells and infiltration by macrophages. It is possible that these changes to antigen presenting cells contribute to ssUVR induced suppression of recall immunity to nickel in humans.  相似文献   

8.
Exposure to ultraviolet radiation (UVR, 290–400 nm) is an important abiotic factor that tropical marine organisms have been exposed to over evolutionary time. Additionally, UVR is known to cause coral bleaching independently and is an important synergistic factor in bleaching caused by thermal stress. Corals can avoid some of the damage associated with exposure to UVR by producing UVR-absorbing compounds such as mycosporine-like amino acids (MAAs). To examine the role of MAAs in the UVR photobiology of corals we conducted experiments on the Hawaiian coral Montipora verrucosa. M. verrucosa colonies were collected from 1, 5 and 10 m and exposed to three different UVR treatments for 3 days under constant visible irradiances equivalent to a depth of 0.15 m depth in Kane'ohe Bay. In addition to quantifying the MAA concentration of these corals several types of UVR-induced damage were measured to assess whether MAAs were providing protection. Quantum yields of photosystem II (PSII) fluorescence and excitation pressure on PSII were measured for each coral, and the formation of direct UVR damage to DNA was measured as cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts for the holobiont. All corals exhibited midday depressions in quantum yields, developed DNA photoproducts, and increased their MAA concentrations significantly as a result of UVR exposures. CPD accumulation in M. verrucosa was highest in corals from 1 m, which had the lowest MAA concentrations at the end of the experiment. Corals originally from 10 m showed the highest MAA concentration and lowest DNA damage in response to exposure to UVR. While corals from all collection depths displayed some sensitivity to increased irradiances of UVR, their respective levels of tolerance were clearly dependant on their previous light history.  相似文献   

9.
Vitamin D is produced by exposure of 7-dehydrocholesterol in the skin to UV irradiation (UVR) and further converted in the skin to the biologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and other compounds. UVR also results in DNA damage producing cyclobutane pyrimidine dimers (CPD). We previously reported that 1,25(OH)2D3 at picomolar concentrations, protects human skin cells from UVR-induced apoptosis, and decreases CPD in surviving cells. 1,25(OH)2D3 has been shown to generate biological responses via two pathways—the classical steroid receptor/genomic pathway or a rapid, non-genomic pathway mediated by a putative membrane receptor. Whether the rapid response pathway is physiologically relevant is unclear. A cis-locked, rapid-acting agonist 1,25(OH)2lumisterol3 (JN), entirely mimicked the actions of 1,25(OH)2D3 to reduce fibroblast and keratinocyte loss and CPD damage after UVR. The effects of 1,25(OH)2D3 were abolished by a rapid-acting antagonist, but not by a genomic antagonist. Skh:hr1 mice exposed to three times the minimal erythemal dose of solar-simulated UVR and treated topically with 1,25(OH)2D3 or JN immediately after UVR showed reduction in UVR-induced UVR-induced sunburn cells (p < 0.01 and <0.05, respectively), CPD (p < 0.01 for both) and immunosuppression (p < 0.001 for both) compared with vehicle-treated mice. These results show for the first time an in vivo biological response mediated by a rapid-acting analog of the vitamin D system. The data support the hypothesis that 1,25(OH)2D3 exerts its photoprotective effects via the rapid pathway and raise the possibility that other D compounds produced in skin may contribute to the photoprotective effects.  相似文献   

10.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

11.
The combined effect of solar radiation (UV-B (280-315 nm), UV-A (315-400 nm) and PAR (400-700 nm)) and vertical mixing (i.e., fluctuating radiation regimes) on the marine dinoflagellates Gymnodinium chlorophorum, Heterocapsa triquetra and Prorocentrum micans was investigated during the austral spring in Patagonia, Argentina. Photosynthesis, measured as radiocarbon incorporation, and accumulation of DNA damage, as cyclobutane pyrimidine dimers (CPDs), were investigated under simulated mixed and non-mixed water column conditions using 3 h incubations centered at local noon. Static samples had significant UVR-induced photoinhibition that was higher in H. triquetra as compared to the other two species. Increasing mixing speed significantly increased UVR-induced inhibition of carbon fixation in G. chlorophorum and H. triquetra. No significant UVR effect was observed in P. micans under any of the mixing regimes. Most of the loss in carbon fixation in G. chlorophorum was due to UV-B while in H. triquetra it was due to UV-A. Part of these responses may be associated to the presence of UV-absorbing compounds which were abundant in P. micans, and low in H. triquetra and in G. chlorophorum. However, other variables such as cell size and active repair might have also influenced our results. We did not detect CPD accumulation in any of the species, probably because of the low solar angle that resulted in very low levels of DNA effective UV-B dose. Our results indicate that exposure to solar UVR in the Patagonia area during spring time (even during ozone depletion events) has a clear impact on photosynthesis and much less or negligible on DNA in the three studied species.  相似文献   

12.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

13.
Exposure of cells to ultraviolet radiation (UVR) is one of the best studied and most used model system for the examination of the biological effects of DNA damage, its repair and tolerance. The major product after UVR treatment is cyclobutane pyrimidine dimer (TT, TC, CC). Pyrimidine dimers are repaired by a direct reversal called photoreactivation or by excision of damage in a process of nucleotide excision repair. Several methods have been developed for the detection and quantification of pyrimidine dimers in DNA. The technique of Small and Greimann, in which DNA is incubated with the pyrimidine dimer-specific endonuclease, was used for the analysis of mutant strains with impaired excision repair system of the unicellular green alga Chlamydomonas reinhardtii. Another method is based on the binding of specific monoclonal antibodies to pyrimidine dimers. The aim of our work was to compare these two techniques with the use of mutant strains of C. reinhardtii — uvsX1 and uvsX2 which are assumed to be deficient in DNA damage recognition. One of their traits was sensitivity to UVR which could be caused by breakdown of the excision repair pathway. The results suggest that the immuno-approach is suitable for the detection of DNA damage induced by UVR. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

14.
Solar ultraviolet radiation (UVR) is well known for its immunosuppressive properties. UVR can suppress immune reactions both in a local and a systemic fashion. One of the major molecular mediators of photoimmunosuppression is UVR-induced DNA damage. In contrast to immunosuppressive drugs, UVR does not act in a general but antigen-specific fashion. This is due to the induction of regulatory T cells. Epidermal Langerhans cells harboring UVR-induced DNA damage appear to be essentially involved in the induction of these cells. Cytokines including interleukin (IL)-12, -18 and -23 exert the capacity to reduce UVR-induced DNA damage via induction of DNA repair. Accordingly, these cytokines prevent UVR-mediated immunosuppression. In contrast to IL-18, IL-12 and IL-23 can also inhibit the suppressive activity of regulatory T cells by a mechanism which still needs to be determined. Clarification of the molecular mechanisms underlying UVR-induced immunosuppression will help to develop new immunosuppressive therapeutic strategies by utilizing UVR-induced regulatory T cells for the treatment of immune-mediated diseases. In addition, these insights will contribute to a better understanding of photocarcinogenesis since suppression of the immune system by UVR essentially contributes to the induction of skin cancer.  相似文献   

15.
Summary Fibroblasts from Xenopus laevis, which possess photoreactivating enzyme were used to study the influence of photoreactivating light on the frequency of pyrimidine dimers in DNA, chromosomal aberrations, sister chromatid exchanges, cell killing and the induction of gene mutations (ouabain-resistance) induced by 254 nm ultraviolet irradiation. The frequency of all biological endpoints studied were reduced following exposure to photoreactivating light parallel to the reduction in the frequencies of pyrimidine dimers (determined as endonuclease sensitive sites). However there was not always an absolute quantitative relationship between the reduction in the frequency of pyrimidine dimers and the reduction in the biological effects. This probably reflects a fast fixation process for the biological effects prior to removal of the dimers by photoreactivation.Abbreviations UV ultraviolet - PR photoreactivating - ESS endonuclease sensitive site - SCE sister chromatid exchanges - BrdUrd 5-brothodeoxyuridine  相似文献   

16.
17.
In situ experiments were conducted at various depths in the water column to determine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of natural phytoplankton assemblages from the subtropical Lake La Angostura (Argentina, 26°45′ S; 65°37° W, 1980 m asl.). Water samples were taken daily and incubated under three radiation treatments: (a) Samples exposed to UVR + Photosynthetic Available Radiation (PAR) – PAB treatment (280–700 nm); (b) Samples exposed to ultraviolet-A radiation (UV-A) + PAR – PA treatment (320–700 nm), and, (c) Samples exposed to PAR only – P treatment (400–700 nm). Additionally, depth profiles were done to determine different physical (i.e., temperature and underwater radiation field) and biological characteristics of the water column – photosynthetic pigments, UV-absorbing compounds, cell concentration, deoxyribonucleic acid (DNA) and cyclobutane pyrimidine dimers (CPDs). The effects of UVR on natural phytoplankton assemblages were significant only in the first 50 cm of the water column, causing a decrease in photosynthetic rates of 36 and 20% due to UV-A and ultraviolet-B radiation (UV-B), respectively; below this depth, however, there were no significant differences between radiation treatments. Concentration of CPDs per mega base of DNA in natural phytoplankton was low, <27 CPDs MB−1 between 0 and 4 m. Data on net DNA damage, together with that on mixing conditions of the water column, suggest that mixing can favour phytoplankton by allowing cells to be transported to depths where active repair can take place. This mechanism to reduce UVR-induced DNA damage would be of great advantage for these assemblages dominated by small cyanobacteria and chlorophytes where UV-absorbing compounds that could act as sunscreens are virtually absent.  相似文献   

18.
Exposure of C3HBYB/Wq hairless (hr/hr) mice to ultra-violet radiation (UVR) for 15 days induced intense tanning of their dorsal skin. Small, dark freckles appeared first, gradually enlarging and coalescing as treatment progressed yielding a uniform tan. Histologically, the gross changes in skin color were matched initially by the appearance of scattered epidermal melanocytes that subsequently proliferated to form discrete, progressively expanding and abutting populations resulting in a uniform melanocyte network throughout the basal layer of the interfollicular epidermis. In contrast, when applied topically before each daily exposure to UVR, a cream or lotion vehicle containing both vitamins C and E (Vits C/E) inhibited UVR-induced erythema and tanning. Application of Vits C/E, both before and after irradiation, was no more effective in providing photoprotection than pre-treatment only. At the tissue level, UVR-induced proliferation and melanogenesis of melanocytes were reduced compared with irradiated controls. The density of individual melanocyte populations was reduced, as was the number of melanocyte populations achieving merger (confluence) with others. Confluence grades and cell counts, estimating the maximum density of melanocyte populations in UVR-Vits C/E-treated mice, were approximately two thirds those of UVR-vehicle-treated controls. However, tanning was only one fifth that of UVR-vehicle-treated controls, suggesting that melanogenesis was also inhibited. In addition to its inhibitory actions on irradiated melanocytes, Vits C/E also inhibited UVR-induced suppression of contact hypersensitivity (CHS) in haired (Hr/hr) and hr/hr mice of the C3HBYB/Wq strain. The common denominators for most, if not all, of the influences of topically-applied Vits C/E in muting the responses of the melanocyte and immune systems to UVR may stem from the vitamins' combined ability to suppress UVR-stimulated inflammation and its associated cascade of mediators.  相似文献   

19.
The role of the pyrimidine dimer in cell killing, DNA synthesis and repair has been studied by utilizing the light-requiring DNA-repair mechanism of photo- reactivation in UV-irradiated chicken-embryo fibroblasts. Survival, as measured by colony-forming ability at 41°C, is increased in cells left in the light. The initial inhibition of DNA synthesis by UV is much less in light-treated cells, and levels reach that of unirradiated controls much faster than when the cells are left in the dark. The number of endonuclease-sensitive sites (dimers)_measured by an assay with a crude extract from M. luteus, rapidly decreases as the cells are allowed to photoreactive. However, in the dark, significant amounts of repair also occur, but at a much lower rate and with a lag phase of several hours. Unscheduled DNA synthesis occurs to a similarly low extent in both dark- and light-treated cells, confirming the finding that some amount of excision repair occurs that is light-independent. When survival is examined as a function of the number of dimers present, the dimers, not the non-dimer products, appear to be responsible for cell killing. In this study, the removal of dimers in vivo by photoreactivation has made it possible to demonstrate directly that dimers are primarily responsible for the deleterious effects of UV on DNA synthesis and survival.  相似文献   

20.
The sensitivity to ultraviolet radiation (UVR, 280-400 nm) of ten species of freshwater and marine phagotrophic protists was assessed in short-term (4 h) laboratory experiments. Changes in the motility and morphology of the cells, as well as direct quantification of DNA damage, were evaluated. The net amount of cyclobutane pyrimidine dimers formed after exposure of the organisms to a weighted dose (Setlow DNA normalized at 300 nm) of 1.7 kJ m(-2) was quantified by an immunoassay using a monoclonal specific antibody directed against thymine dimers (T<>Ts). This is the first application of this method to aquatic protists. The results indicated that marine and freshwater heterotrophic nanoflagellates, representatives from the order Kinetoplastida (Bodo caudatus and Bodo saltans, respectively) accumulate significantly higher DNA damage than protists representatives of the orders Chrysomonadida, Cryptomonadida or Scuticociliatida. The high proportion of A:T bases in the unique kinetoplast DNA, may explain the higher accumulation of T<>Ts found in bodonids. Experiments made with B. saltans to study the dynamics of DNA damage accumulation in the presence of UVR and photorepairing light, indicated that the mechanisms of DNA repair in this species are very inefficient. Furthermore, the dramatic changes observed in the cell morphology of B. saltans probably compromise its recovery. Our results show that sensitivity to UVR among aquatic phagotrophic protists is species-specific and that different cell targets are affected differently among species. While DNA damage in B. saltans was accompanied by motility reduction, altered morphology, and finally mortality, this was not observed in other bodonids as well as in the other species tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号