首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here that the inositol 1,4,5-trisphosphate (IP3) precursor, L-alpha-phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent molecule (1 microM) which activates the ryanodine-sensitive Ca2+ release channel from rabbit skeletal muscle terminal cisternae incorporated into a phospholipid bilayer. It also stimulates Ca2+ release from these membrane vesicles. Therefore, it may play a modulating role in excitation-contraction coupling. In the bilayer, PIP2 added on the cytoplasmic side increased the mean channel opening probability 2-12-fold in the presence and absence of physiological Mg2+ and ATP. From flux studies, PIP2-induced Ca2+ release, occurring through the ryanodine-sensitive Ca2+ release channel, displayed saturation kinetics. The rate of Ca2+ release induced by PIP2 was approximately greater than 50% slower than the rates induced by other agents (e.g. caffeine, Ca2+, ATP). PIP2, and not IP3, effectively elicited Ca2+ release from terminal cisternae. On the contrary, IP3, and not PIP2, specifically mediated Ca2+ release from dog brain cerebellum microsomes, where IP3 receptors are known to be found. The PIP2-induced Ca2+ release from muscle membranes was not dependent on medium [Ca2+] (from less than 10(-9) to approximately 10(-4) M). However, IP3 could activate the terminal cisternae Ca2+ channel in the bilayer when there was low Ca2+ (less than 10(-7) M). The data suggest that the ionic microenvironment around the Ca2+ channel may be different for observing the two phosphoinositide actions.  相似文献   

2.
Stretch-activated conductances are commonly encountered in careful electric recordings. Those of known proteins (TRP, MscL, MscS, K(2p), Kv, etc.) all share a core, which houses the ion pathway and the gate, but no recognizable force-sensing domain. Like animal TRPs, the yeast TRPY1 is polymodal, activated by stretch force, Ca(2+), etc. To test whether its S5-S6 core senses the stretch force, we tried to uncouple it from the peripheral domains by strategic peptide insertions to block the covalent core-periphery interactions. Insertion of long unstructured peptides should distort, if not disrupt, protein structures that transmit force. Such insertions between S6 and the C-terminal tail largely removed Ca(2+) activation, showing their effectiveness. However, such insertions as well as those between S5 and the N-terminal region, which includes S1-S4, did not significantly alter mechanosensitivity. Even insertions at both locations flanking the S5-S6 core did not much alter mechanosensitivity. Tryptophan scanning mutations in S5 were also constructed to perturb possible noncovalent core-periphery contacts. The testable tryptophan mutations also have little or no effects on mechanosensitivity. Boltzmann fits of the wild-type force-response curves agree with a structural homology model for a stretch-induced core expansion of ~2 nm(2) upon opening. We hypothesize that membrane tension pulls on S5-S6, expanding the core and opening the TRPY1 gate. The core being the major force sensor offers the simplest, though not the only, explanation of why so many channels of disparate designs are mechanically sensitive. Compared with the bacterial MscL, TRPY1 is much less sensitive to force, befitting a polymodal channel that relies on multiple stimuli.  相似文献   

3.
Depolarization of membrane potential by high external K+ activates Ca2+ influx via voltage-dependent Ca2+ channels in GH4C1 cells (Tan, K.-N., and Tashjian, A. H., Jr. (1983) J. Biol. Chem. 258, 418-426). The involvement of this channel in thyrotropin-releasing hormone (TRH) action on prolactin (PRL) release was assessed by comparing the pharmacological characteristics of TRH-induced PRL release with PRL release due to high K+. Two components of TRH-stimulated PRL release were detected. The major component (approximately equal to 75%) was dependent on external Ca2+ concentration and was inhibited by voltage-dependent Ca2+ channel blockers in a manner quantitatively similar to high K+-stimulated PRL release. The minor component (approximately equal to 25%) of TRH-stimulated PRL release was insensitive to voltage-dependent Ca2+ channel blockers and could occur in the presence of low external Ca2+ (10(-5)-10(-7) M). Neither voltage-dependent Ca2+ channel blockers nor depletion of medium Ca2+ prevented the action of TRH on mobilizing cell-associated 45Ca2+ from GH4C1 cells. Divalent cations that permeate voltage-dependent Ca2+ channels (Sr2+ and Ba2+) substituted for Ca2+ in supporting high K+- and TRH-stimulated PRL release while Mg2+, a nonpermeant cation, did not. We conclude that TRH stimulates PRL release by increasing [Ca2+]i through at least two mechanisms: one requires only low [Ca2+]o, the second involves Ca2+ influx via voltage-dependent Ca2+ channels. This latter mechanism accounts for approximately equal to 75% of maximum TRH-induced PRL release.  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is capable of inducing global Ca2+ increases via a lysosome-associated mechanism, but the mechanism mediating NAADP-induced intracellular Ca2+ release remains unclear. The present study reconstituted and characterized a lysosomal NAADP-sensitive Ca2+ release channel using purified lysosomes from rat liver. Furthermore, the identity of lysosomal NAADP-sensitive Ca2+ release channels was also investigated. It was found that NAADP activates lysosomal Ca2+ release channels at concentrations of 1 nM to 1 microM, but this activating effect of NAADP was significantly reduced when the concentrations used increased to 10 or 100 microM. Either activators or blockers of Ca2+ release channels on the sarcoplasmic reticulum (SR) had no effect on the activity of these NAADP-activated Ca2+ release channels. Interestingly, the activity of this lysosomal NAADP-sensitive Ca2+ release channel increased when the pH in cis solution decreased, but it could not be inhibited by a lysosomal H+-ATPase antagonist, bafilomycin A1. However, the activity of this channel was significantly inhibited by plasma membrane L-type Ca2+ channel blockers such as verapamil, diltiazem, and nifedipine, or the nonselective Ca2+,Na+ channel blocker, amiloride. In addition, blockade of TRP-ML1 (transient receptor potential-mucolipin 1) protein by anti-TRP-ML1 antibody markedly attenuated NAADP-induced activation of these lysosomal Ca2+ channels. These results for the first time provide direct evidence that a NAADP-sensitive Ca2+ release channel is present in the lysosome of native liver cells and that this channel is associated with TRP-ML1, which is different from ER/SR Ca2+ release channels.  相似文献   

5.
A possible modulation of ion permeabilities of rat intestinal brush-border membrane vesicles by Ca2+, a putative second messenger of salt secretion, was explored by three independent methods: (1) measurements of [3H]glucose accumulation driven by a Na+ gradient; (2) stopped-flow spectrophotometry of salt-induced osmotic swelling; (3) 86Rb+, 22Na+ and 36Cl- flux measurements. Cytoskeleton-deprived membrane vesicles were prepared from isolated brushborders by thiocyanate treatment. Intravescicular Ca2+ levels were varied by preincubating vesicles in Ca-EGTA buffers in the presence of the Ca2+-ionophore A23187. At Ca2+free greater than 10(-5) M, initial Na+-dependent glucose uptake in the presence of a 0.1 M NaSCN gradient (but not in its absence) was inhibited by about 50 per cent as compared to EGTA alone (ED50 approximately equal to 10(-6) M Ca2+). By contrast, initial rates of 22Na+ uptake and reswelling rates of vesicles exposed to a NaSCN gradient were increased at least 2-fold by 10(-5) M Ca2+free. Both observations are compatible with a Ca2+-induced increase of the Na+-permeability of the vesicle membrane. The modulation of ion transport was fully reversible and critically dependent on internal Ca2+, suggesting a localization of Ca2+-sensor sites at the inner surface of the microvillous membrane. As shown by radiotracer and osmotic swelling measurements, micromolar Ca2+ additionally increased the flux rate of K+, Rb+, Cl- and NO-3 but did not change the membrane permeability for small uncharged molecules, including glucose and mannitol. The effect of Ca2+ on ion permeabilities could be blocked by Ba2+ (10(-3) M) or Mg2+ (10(-2) M), but not by amiloride (10(-3) M), apamin (2 X 10(-7) M), trifluoperazine (10(-4) M) or quinine (5 X 10(-4) M). At present it is unclear whether Ca2+ activates a nonselective cation and anion channel or multiple highly selective channels in the vesicle membrane.  相似文献   

6.
Large conductance Ca(2+)-activated K+ channels in rabbit pulmonary artery smooth muscle cells are activated by membrane stretch and by arachidonic acid and other fatty acids. Activation by stretch appears to occur by a direct effect of stretch on the channel itself or a closely associated component. In excised inside-out patches stretch activation was seen under conditions which precluded possible mechanisms involving cytosolic factors, release of Ca2+ from intracellular stores, or stretch induced transmembrane flux of Ca2+ or other ions potentially capable of activating the channel. Fatty acids also directly activate this channel. Like stretch activation, fatty acid activation occurs in excised inside-out patches in the absence of cytosolic constituents. Moreover, the channel is activated by fatty acids which, unlike arachidonic acid, are not substrates for the cyclo-oxygenase or lypoxygenase pathways, indicating that oxygenated metabolites do not mediate the response. Thus, four distinct types of stimuli (cytosolic Ca2+, membrane potential, membrane stretch, and fatty acids) can directly affect the activity of this channel.  相似文献   

7.
Effects of ryanodine in skinned cardiac cells   总被引:6,自引:0,他引:6  
Ryanodine (1 X 10(-5) M) did not affect the Ca2+ sensitivity of the myofilaments of skinned (sarcolemma removed by microdissection) cardiac cells from the rat ventricle. Ryanodine (1 X 10(-5) M) inhibited three types of Ca2+ release from the sarcoplasmic reticulum (SR), which have different mechanisms: 1) Ca2+-induced release of Ca2+ triggered by a rapid and transient increase of [free Ca2+] at the outer surface of the SR; 2) caffeine-induced release of Ca2+; 3) spontaneous cyclic release of Ca2+ occurring in the continuous presence of a [free Ca2+] sufficient to overload the SR. These results suggest that the three types of Ca2+ release are through the same channel across the SR membrane, although the gating mechanisms are different for the three types. Ryanodine also diminished the rate of Ca2+ accumulation into the SR. Even in the presence of 1 X 10(-5) M ryanodine the SR accumulated Ca2+ that could be released when the SR was sufficiently overloaded with Ca2+. Thus, ryanodine pretreatment did not permit the direct activation of the myofilaments by externally applied Ca2+. The approximately 1000-fold difference in the effective concentrations of ryanodine in intact vs. skinned cardiac cells suggests that low concentrations of ryanodine act in the intact cardiac tissues through processes or on structures that are destroyed by the skinning procedure. No significant differences were observed in the effects of ryanodine in skinned cardiac cells from different adult mammalian species.  相似文献   

8.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

9.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

10.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

11.
The effects of caffeine on cytoplasmic [Ca2+] ([Ca2+]i) and plasma membrane currents were studied in single gastric smooth muscle cells dissociated from the toad, Bufo marinus. Experiments were carried out using Fura-2 for measuring [Ca2+]i and tight-seal voltage-clamp techniques for recording membrane currents. When the membrane potential was held at -80 mV, in 15% of the cells studied caffeine increased [Ca2+]i without having any effect on membrane currents. In these cells ryanodine completely abolished any caffeine induced increase in [Ca2+]i. In the other cells caffeine caused both an increase in [Ca2+]i and activation of an 80-pS nonselective cation channel. In this group of cells ryanodine only partially blocked the increase in [Ca2+]i induced by caffeine; moreover, the change in [Ca2+]i that did occur was tightly coupled to the time course and magnitude of the cation current through these channels. In the presence of ryanodine, blockade of the 80-pS channel by GdCl3 or decreasing the driving force for Ca2+ influx through the plasma membrane by holding the membrane potential at +60 mV almost completely blocked the increase in [Ca2+]i induced by caffeine. Thus, the channel activated by caffeine appears to be permeable to Ca2+. Caffeine activated the cation channel even when [Ca2+]i was clamped to below 10 nM when the patch pipette contained 10 mM BAPTA suggesting that caffeine directly activates the channel and that it is not being activated by the increase in Ca2+ that occurs when caffeine is applied to the cell. Corroborating this suggestion were additional results showing that when the membrane was depolarized to activate voltage-gated Ca2+ channels or when Ca2+ was released from carbachol- sensitive internal Ca2+ stores, the 80-pS channel was not activated. Moreover, caffeine was able to activate the channel in the presence of ryanodine at both positive and negative potentials, both conditions preventing release of Ca2+ from stores and the former preventing its influx. In summary, in gastric smooth muscle cells caffeine transiently releases Ca2+ from a ryanodine-sensitive internal store and also increases Ca2+ influx through the plasma membrane by activating an 80- pS cation channel by a mechanism which does not seem to involve an elevation of [Ca2+]i.  相似文献   

12.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

13.
Calcium release in smooth muscle   总被引:16,自引:0,他引:16  
H Karaki  G B Weiss 《Life sciences》1988,42(2):111-122
In smooth muscle, maintenance of the contractile response is due to Ca2+ influx through two types of Ca2+ channel, a voltage-dependent Ca2+ channel and a receptor-linked Ca2+ channel. However, a more transient contraction can be obtained by release of Ca2+ from a cellular store, possibly the sarcoplasmic reticulum. In spike generating smooth muscle (e.g., guinea-pig taenia caeci), spike discharges may trigger the release of cellular Ca2+ by activating a Ca2+-induced Ca2+ release mechanism. Caffeine directly activates this mechanism in the absence of a triggered Ca2+ influx. In contrast to this, maintained depolarization may not only release but also refill the Ca2+ store. Drug-receptor interactions also release Ca2+ from a cellular store. This release may be elicited with inositol trisphosphate produced by receptor-linked phosphoinositide turnover. In non-spike generating smooth muscle (e.g., rabbit thoracic aorta), maintained membrane depolarization does not release but, instead, fills the Ca2+ store. However, caffeine and receptor-agonists release the Ca2+ store - possibly by activating the Ca2+-induced Ca2+ release mechanism and phosphoinositide turnover, respectively. The Ca2+ store in smooth muscle is filled by Ca2+ entry through voltage dependent Ca2+ channels and also by resting Ca2+ influx in the absence of receptor-agonists. The Ca2+ entering the cells through these pathways may be accumulated by the Ca2+ store and may activate the contractile filaments.  相似文献   

14.
The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.  相似文献   

15.
High-conductance K+ channels are known to be activated by internal Ca2+ and membrane depolarization. The effects of changes in internal Mg2+ concentration have now been investigated in patch-clamp single-channel current experiments on excised membrane fragments from mouse acinar cells. It is shown that Mg2+ in the concentration range 10(-6)-10(-3) M evokes a dose-dependent K+ channel activation at a constant Ca2+ concentration of 10(-8) M. The demonstration that changes in [Mg2+]i between 2.5 X 10(-4) and 1.13 X 10(-3) M has effects on the channel open-state probability indicates that fluctuations in [Mg2+]i in intact cells may influence the control of channel opening.  相似文献   

16.
17.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

18.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

19.
The goal of the present review is to report information concerning cardiac innervation or more precisely to approach the modulation of cardiac electrical and mechanical activity by parasympathetic innervation. Acetylcholine (ACh) release by nerve endings from the vagus nerve hyperpolarizes the membrane, shortens action potential (AP) duration and has a negative inotropic effect on cardiac muscle. Toxins are usefull tools in the study of membrane signals. The Caribbean ciguatoxin (C-CTX-1) has a muscarinic effect on frog atrial fibres. The toxin evokes the release of ACh from motoneuron nerve terminals innervating this tissue which allows us to propose a model, similar to the one of the neuromuscular junction (nmj), to describe the events occurring during the triggering and release of ACh. Trachynilysin (TLY) is a proteic toxin which causes an influx of Ca2+ into the cells and releases ACh from nmj synaptic vesicles. TLY has a muscarinic effect on atrial fibres which is explicated in the release of neurotransmitter from the nerve endings generated by the TLY-induced Ca2+ influx. It is known that ACh release from nmj is known to be due to exocytosis of synaptic vesicles via the activation of a proteic complex blocked by botulinum toxins. One of these proteins SNAP-25 is the target of type A botulinum toxin (BoNT/A). The study of hearts isolated from BoNT/A poisoned frogs show that atrial AP is lengthened and reveals the presence of SNAP-25 in nerve endings of this tissue. Moreover, the electrical activity of ventricular muscle is markedly altered; in BoNT/A treated frog, an important outward current activated by internal Ca2+ develops. ACh released from nerve terminals binds to a G protein coupled membrane receptor and activates a K+ channel and other effectors. Five subtypes of muscarinic receptors have been cloned from different tissue (M1, M2, M3, M4) subtypes have been identified in cardiac tissues throughout many species. These receptors coupled with different G-proteins activate different effectors. M1 receptors modulate the cardiac plateau and therefore the magnitude of the peak contraction. M2 receptors are mainly involved in the repolarization phase of the AP and modulate the duration of the peak contraction. The roles of M3 and M4 are not yet clearly defined; however, they may activate K+ currents. In conclusion, ACh releases from parasympathetic nerve endings which innervate cardiac cells follows to similar events (Ca2+ influx; presence of a SNAP-25 protein) to those which produce ACh release from nmj, stimulates different G proteins coupled muscarinic receptors, and activates different effectors involved in the modulation of cardiac electrical and mechanical activity.  相似文献   

20.
S100A1, a Ca2+-binding protein of the EF-hand type, is most highly expressed in striated muscle and has previously been shown to interact with the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) isoform. However, it was unclear whether S100A1/RyR1 interaction could modulate SR Ca2+ handling and contractile properties in skeletal muscle fibers. Since S100A1 protein is differentially expressed in fast- and slow-twitch skeletal muscle, we used saponin-skinned murine Musculus extensor digitorum longus (EDL) and Musculus soleus (Soleus) fibers to assess the impact of S100A1 protein on SR Ca2+ release and isometric twitch force in functionally intact permeabilized muscle fibers. S100A1 equally enhanced caffeine-induced SR Ca2+ release and Ca2+-induced isometric force transients in both muscle preparations in a dose-dependent manner. Introducing a synthetic S100A1 peptide model (devoid of EF-hand Ca2+-binding sites) allowed identification of the S100A1 C terminus (amino acids 75-94) and hinge region (amino acids 42-54) to differentially enhance SR Ca2+ release with a nearly 3-fold higher activity of the C terminus. These effects were exclusively based on enhanced SR Ca2+ release as S100A1 influenced neither SR Ca2+ uptake nor myofilament Ca2+ sensitivity/cooperativity in our experimental setting. In conclusion, our study shows for the first time that S100A1 augments contractile performance both of fast- and slow-twitch skeletal muscle fibers based on enhanced SR Ca2+ efflux at least mediated by the C terminus of S100A1 protein. Thus, our data suggest that S100A1 may serve as an endogenous enhancer of SR Ca2+ release and might therefore be of physiological relevance in the process of excitation-contraction coupling in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号