首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

2.
Considerable evidence indicates that the increase in guard cell turgor resulting in stomatal opening is brought about by active K+ uptake into guard cells. Only a small increase in inorganic anions appears to accompany the increase in K+. A plausible explanation is that organic acids are produced within guard cells and act as counterions, whereas the H+ produced are exchanged for K+.  相似文献   

3.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

4.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

5.
Summary

The anatomy and ultrastructure of guard cells from a range of species varying from the primitive types, such as mosses, to the advanced grasses and orchids are described. An attempt is made to trace the lines along which stomata developed and to define what might be considered advanced stomata. Additionally, the differentiation of guard cells from guard mother cells is discussed. Of particular note is the preprophase band of microtubules which marks the zone where the future cell wall will form and the movement of the spindle and developing cell plate through 45 degrees. The structure and function of guard cells are intimately linked. Stomata are turgor regulated valves; the osmotica for absorbing water during opening are K+, Cl- and malate anions which accumulate in the guard cell vacuoles. Upon stomatal closure, K+ and Cl- exit from the guard cells while at least some of the carbon from malate is channelled into starch and there is a resultant loss of guard cell turgor. The Calvin cycle may be absent or of low activity in guard cell chloroplasts and under those circumstances a source of carbon and energy to sustain the guard cells is needed. Hence it is believed that sucrose is transported into the guard cells from mesophyll cells. A brief consideration of the mechanism by which the ions are transported across the plasma membrane and tonoplast is made: the driving force for the K+, Cl- and malate movement across the membranes is the proton motive force set up by proton-pumping ATPases.  相似文献   

6.
细胞内离子在气孔运动中的作用   总被引:1,自引:0,他引:1  
高巍  尚忠林 《植物学报》2010,45(5):632-639
气孔运动与植物水分代谢密切相关。保卫细胞中的无机离子作为第二信使(Ca2+)或者渗透调节物质(K+、Cl)在响应 外界理化因子的刺激、调节保卫细胞膨压过程中发挥重要作用。保卫细胞质膜和液泡膜上的离子通道作为各种刺激因素作 用的靶位点, 是保卫细胞离子转运的关键组分, 在气孔运动调控过程中扮演关键角色。该文对近年来保卫细胞离子的作用 和离子通道研究的进展进行了综述。  相似文献   

7.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance.  相似文献   

8.
The mechanism of stomatal closing by salicylic acid (SA) has been investigated. The addition of 1 mM SA to fully opened stomata resulted in a significant reduction of 75% in stomatal aperture. Stomata in the treatment of SA with EGTA closed as observed in the treatment of SA. However, the addition of catalase with SA completely inhibited stomatal closing. Stomatal closing induced by SA was also reduced by Ca2+. To understand the relation bewteen stomatal closing by SA and catalase activity, the effect of SA on catalse activity and the effect of AT (catalase inhibitor) on stomatal closing was investigated. SA inhibited 32% of catalase activity. Stomata in isolated epidermis floated on an incubation solution containing 0.1 mM AT closed from 9.6 μm to 3.2 μm after 1 hour. SA stimulated K+ efflux as much as the twice of the control in isolated strips. SA inhibited 53% of photosynthetic activity at the light intensity of 1000 μmole m2 s1 on SA infiltrated leaves. A similar result was found on stomatal conductance in SA infiltrated leaves. These results indicate that SA inhibit catalase activity and increase the concentration of H2O2 in guard cell cytoplasm. H2O2 oxidize the plasma membrane and increase the membrane permeability of K+. The mass efflux of K+ induce the loss of turgor pressure and lead to stomatal closing. The inhibition of photosynthetic activity by SA suggests that stomatal closing by SA is also related with the decrease of photosynthetic activity.  相似文献   

9.
Upon incubation of epidermal peels of Commelina communis in 1 millimolar KCl, a synergistic effect of light and low fusicoccin (FC) concentrations on stomatal opening is observed. In 1 millimolar KCl, stomata remain closed even in the light. However, addition of 0.1 micromolar FC results in opening up to 12 micrometers. The same FC concentration stimulates less than 5 micrometers of opening in darkness. The synergistic effect (a) decreases with increasing FC or KCl concentrations; (b) is dark-reversible; (c) like stomatal opening in high KCl concentrations (120 millimolar) is partially inhibited by the K+ channel blocker, tetraethyl-ammonium+ (20 millimolar). In whole-cell patch-clamp experiments with guard cell protoplasts of Vicia faba, FC (1 or 10 micromolar) stimulates an increase in outward current that is essentially voltage independent between - 100 and +60 millivolts, and occurs even when the membrane potential is held at a voltage (−60 millivolts) at which K+ channels are inactivated. These results are indicative of FC activation of a H+ pump. FC effects on the magnitude of inward and outward K+ currents are not observed. Epidermal peel and patch clamp data are both consistent with the hypothesis that the plasma membrane H+ ATPase of guard cells is a primary locus for the FC effect on stomatal apertures.  相似文献   

10.
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR–PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.

SMALL AUXIN UP RNA (SAUR) proteins and PP2C.D phosphatases antagonistically regulate stomatal aperture in Arabidopsis by modulating the activities of plasma membrane H+-ATPases and K+ channels.  相似文献   

11.
The inward rectified potassium current ofVicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60% –75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

12.
Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well‐documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint–relaxation–recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild‐type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+‐ATPase and slac1 Cl? channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics.  相似文献   

13.
Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S‐type) and rapid (R‐type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage‐independent anion channel component in guard cells. In contrast, the R‐type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R‐type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark‐ and CO2‐induced stomatal closure, as well as in response to the drought‐stress hormone abscisic acid. Patch‐clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R‐type currents compared with wild‐type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage‐dependent anion currents reminiscent to R‐type channels could be activated. In line with the features of the R‐type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R‐Type channels, like voltage‐dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long‐term anion and K+ efflux via SLAC1 and GORK, respectively.  相似文献   

14.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

15.
Environmental stimuli‐triggered stomatal movement is a key physiological process that regulates CO2 uptake and water loss in plants. Stomata are defined by pairs of guard cells that perceive and transduce external signals, leading to cellular volume changes and consequent stomatal aperture change. Within the visible light spectrum, red light induces stomatal opening in intact leaves. However, there has been debate regarding the extent to which red‐light‐induced stomatal opening arises from direct guard cell sensing of red light versus indirect responses as a result of red light influences on mesophyll photosynthesis. Here we identify conditions that result in red‐light‐stimulated stomatal opening in isolated epidermal peels and enlargement of protoplasts, firmly establishing a direct guard cell response to red light. We then employ metabolomics workflows utilizing gas chromatography mass spectrometry and liquid chromatography mass spectrometry for metabolite profiling and identification of Arabidopsis guard cell metabolic signatures in response to red light in the absence of the mesophyll. We quantified 223 metabolites in Arabidopsis guard cells, with 104 found to be red light responsive. These red‐light‐modulated metabolites participate in the tricarboxylic acid cycle, carbon balance, phytohormone biosynthesis and redox homeostasis. We next analyzed selected Arabidopsis mutants, and discovered that stomatal opening response to red light is correlated with a decrease in guard cell abscisic acid content and an increase in jasmonic acid content. The red‐light‐modulated guard cell metabolome reported here provides fundamental information concerning autonomous red light signaling pathways in guard cells.  相似文献   

16.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   

17.
The halophyte Aster tripolium, unlike well-studied non-halophytic species, partially closes its stomata in response to high Na+ concentrations. Since A. tripolium possesses no specific morphological adaptation to salinity, this stomatal response, preventing excessive accumulation of Na+ within the shoot via control of the transpiration rate, is probably a principal feature of its salt tolerance within the shoot. The ionic basis of the stomatal response to Na+ was studied in guard cell protoplasts from A. tripolium and from a non-halophytic relative, Aster amellus, which exhibits classical stomatal opening on Na+. Patch-clamp studies revealed that plasma membrane K+ channels (inward and outward rectifiers) of the halophytic and the non-halophytic species are highly selective for K+ against Na+, and are very similar with respect to unitary conductance and direct sensitivity to Na+. On the other hand, both species possess a significant permeability to Na+ through non-rectifying cation channels activated by low (physiological) external Ca2+ concentrations. Finally, it appeared that the differential stomatal response between the two species is achieved, at least in part, by a Na+-sensing system in the halophyte which downregulates K+ uptake. Thus, increases in guard cell cytosolic Na+ concentration in A. tripolium but not in A. amellus, lead to a delayed (20–30 min) and dramatic deactivation of the K+ inward rectifier. This deactivation is probably mediated by an increase in cytosolic Ca2+ since buffering it abolishes the response. The possible role of K+ inward rectifiers in the response of A. tripolium’s stomata to Na+, suggested by patch-clamp studies, was confirmed by experiments demonstrating that specific blockade of inward rectifying channels mimics Na+ effects on stomatal aperture, and renders aperture refractory to Na+.  相似文献   

18.
O. Pantoja  C. M. Willmer 《Planta》1988,174(1):44-50
Redox systems have been reported in the plasma membrane of numerous cell types and in cells from various species of higher plant. A search for a redox system in the plasma membrane of guard cells was therefore made in efforts to explain how blue light stimulates stomatal opening, a process which is coupled to guard cell H+ efflux and K+ uptake. The rates of O2 uptake by intact guard-cell protoplasts (GCP) of Commelina communis L., in the dark, were monitored in the presence of NAD(P)H since the stimulation of O2 consumption by reduced pyridine nucleotides is used as an indicator of the presence of a redox system in the plasma membrane. Oxygen consumption by intact GCP increased two- to threefold in the presence of NAD(P)H. The NAD(P)H-stimulation of O2 uptake was dependent on Mn2+ and was stimulated 10- to 15-fold by salicylhydroxamic acid (SHAM). Catalase, cyanide and ascorbate, a superoxide scavenger, all individually inhibited the SHAM-stimulated O2 uptake. These are all characteristics of peroxidase activity although some of these features have been used to imply the presence of a redox system located in the plasma membrane. High levels of peroxidase activity (using guaiacol as a substrate) were also detected in the GCP and in the supernatant. The activity in the supernatant increased with time indicating that peroxidase was being excreted by the protoplasts. The properties of O2 uptake by the incubation medium after separation from the protoplasts were similar to those of the protoplast suspension. It is concluded that our observations can be more readily explained by peroxidase activity associated with the plasma membrane and secreted by the GCP than by the presence of a redox system in the plasma membrane of the protoplasts.Abbreviations EDTA ethylenediaminetetraacetic acid - GCP guard cell protoplast - Mes 2-(N-morpholino)ethanesulphonic acid - SHAM salicylhydroxamic acid  相似文献   

19.
Phototropins (phot1 and phot2) are blue light (BL) receptorsthat mediate responses including phototropism, chloroplast movementand stomatal opening, and increased cytosolic Ca2+. BL absorbedby phototropins activates plasma membrane H+-ATPase in guardcells, resulting in membrane hyperpolarization, and drives K+uptake and stomatal opening. However, it is unclear whetherthe phototropin-mediated Ca2+ increase activates the H+-ATPase.Here, we determined cytosolic Ca2+ concentrations in guard cellprotoplasts (GCPs) from Arabidopsis transformed with aequorin.Cytosolic Ca2+ increased rapidly in response to BL in GCPs fromboth the wild type and phot1 phot2 double mutants, but was mostlysuppressed by an inhibitor of photosynthetic electron flow (DCMU).With depleted external K+, we observed another slower Ca2+ increase,which was phototropin- dependent. Fusicoccin, a H+-ATPase activator,mimicked the effect of BL. The slow Ca2+ increase thus appearsto result from membrane hyperpolarization. The slow Ca2+ increasewas suppressed by external K+ and was restored by blockers ofinward-rectifying K+ channels, CsCl and tetraethylammonium,suggesting the preferential uptake of K+ over Ca2+. Such efficientK+ uptake in response to BL was not found in mesophyll cells.Both the fast and the slow Ca2+ increases were inhibited byCa2+ channel blockers (CoCl2 and LaCl3) and a chelating agent(EGTA). These results indicate that the phototropin-mediatedCa2+ increase was not observed prior to H+-ATPase activationin guard cells and that Ca2+ entered guard cells via Ca2+ channelsthrough photosynthesis and phototropin-mediated membrane hyperpolarization.  相似文献   

20.
K. Raschke  G. D. Humble 《Planta》1973,115(1):47-57
Summary Epidermal strips from leaves of Vicia faba L. with ruptured epidermal cells and intact guard cells were exposed to solutions of K+ in association with non-absorbable anions. KCl served as control. Stomata exposed to a range of concentrations of K iminodiacetate, K 4,4-dimethyl-4,7-diazadecane-1,10-disulfonate and K benzene sulfonate opened as widely as on KCl, indicating that K+ can be taken up by guard cells without the necessity of an anion traveling along. Electroneutrality was maintained by an exchange of K+ for H+. Release of H+ from guard cells was recorded as a drop in the pH of the solution on which the epidermal samples floated. Formation of acid equivalents by the guard cells was also recorded by automatic titration of the bathing solution at constant pH while CO2 was continuously being removed. A considerable amount of H+ was released from the epidermis by ion exchange (about 8x10-10 eq/mm2). Subtracting this quantity from the total amount of H+ titrated resulted in an estimate of acid production during stomatal opening of 1.2 to 7x10-10 eq/mm2 or 1.5 to 8.5x10-12 eq/stoma. These amounts are equivalent to the known capacity of the guard cells of Vicia faba to absorb K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号