首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In modern agriculture, natural plant communities may be replaced by a single crop species. Weeds, some microorganisms, and viruses, as well as some herbivores are organisms that should be eliminated. Pesticides and fertilizers not only affect the pests and crops, but soil, non-pest species, water, food, and humans. In traditional agriculture weeds are components with an important ecological role in the maintenance of the system. Some weeds have been used as tools to control the growth of other weeds in traditional agroecosystems. Researchers on sustainable and organic agriculture get valuable information from traditional agriculture and currently are conducting research on plant breeding, soil fertility and tillage, crop protection, and cropping systems. Allelopathy and chemical ecology are directly involved in each of these fields and can play an important role in crop productivity, conservation of genetic diversity, and maintenance of ecosystems stability. Allelopathy has been shown to be related with problems of chemical interference between crops and weeds, crops and crops, toxicity of crops and weeds residues, and/or crops and weeds exudates. Problems of autotoxicity, orchard replanting, and forest regeneration are also referred as allelopathic. Allelopathy is strongly coupled with other stresses of the environment, including insects and disease, temperature extremes, nutrient and moisture variables, radiation, and herbicides. These stress conditions often enhance allelochemical production and increase the potential for allelopathic interference. Allelopathy offers potential for weed control through the production and release of allelochemicals from plants. Allelochemicals may impact the availability of nutrients through effects on the symbiotic microbes. Destruction and changes in the use of soils in the tropics have decreased biodiversity, bringing about the loss of valuable natural products. Many different types of useful products such as natural pesticides and drugs can arise from allelopathy studies. New methods must be generated for allelopathy as a part of the biotic resources management strategies.  相似文献   

2.
Effects of Crop Diversity on Agroecosystem Function: Crop Yield Response   总被引:2,自引:0,他引:2  
Understanding the role of diversity in the functioning of ecosystems has important implications for agriculture. Previous agricultural research has shown that crop rotation and the use of cover crops can lead to increases in yield relative to monoculture; however, few studies have been performed within the broader context of diversity–ecosystem function theory and in the absence of chemical inputs. We performed a field experiment in SW Michigan, USA, in which we manipulated the number of crop species grown in rotation and as winter cover crops over a 3-year period to test if varying the number of species in a rotation affected grain yield, a critical metric of ecosystem function in row-crops. The experimental design was unique in that no fertilizer or pesticides were used, and the only management variable manipulated was number of species in the rotation, thus providing a strong comparison to grassland diversity–ecosystem function experiments. Treatments included continuous monocultures of three row-crops, corn Zea mays L., soybean Glycine max (L.) Merr., and winter wheat Triticum aestivum L., and 2- and 3-year annual rotations with and without cover crops (zero, one, or two legume/small grain species), encompassing a range of crop diversity from one to six species. Crop yields and weed biomass were measured annually for 3 years and plant available soil nitrogen was measured over the course of the growing season in the final year of the study. In all 3 years, corn grain yield increased linearly in response to the number of crops in the rotation. Corn yields in the highest diversity treatment (three crops, plus three cover crops) were over 100% higher than in continuous monoculture and were not significantly different from the county average for each of the 3 years despite the absence of chemical inputs. Corn yields in the diversity treatments were strongly correlated with the availability of inorganic soil nitrogen, which was likely influenced by the number of different legume species (crops and cover crops) present in the rotation. In soybean and winter wheat, yield differences among crop diversity treatments were also significant, but of lower magnitude (32 and 53%, respectively), and showed little direct relationship to the number of crop species grown in a rotation. Results demonstrate that agricultural research motivated by ecological theory can provide important insights into the functioning of agroecosystems and enhance our understating of the linkages between diversity and ecosystem function. Importantly, these results suggest that reduced chemical inputs do not necessarily result in yield penalties and provide support for incorporation of crop or species diversity when determining how ecosystem services can be included in food, fiber, and biofuel production.  相似文献   

3.
Shahid Hussain 《Phyton》2022,91(12):2687-2697
Heavy metal(loid) accumulation in agricultural soils is a threat to the soil capacity, quality, and productivity. It also increases human exposure to heavy metal(loid)s via consumption of contaminated plant-based foods. The detrimental effects of soil contamination also deteriorate the environment of plants and animals. For sustainable agriculture, therefore, the soil must be protected from toxic levels of heavy metal(loid)s. Studies on heavy metal(loid) balances in agricultural soils are important in predicting future risks to sustainable production from agro-ecological zones and human exposure to heavy metal(loid)s. The latest and continuous indexing of the problem seems a prerequisite for sustainable agriculture. This review provides some background information and then summarizes key methodological approaches for studies on indexing and balance of heavy metal(loid)s in agricultural soils. In the end, important soil and health indices are explained that may be useful in understanding the extent of the problem. The provided information would contribute to sustainable heavy metal(loid) management in the agricultural soils, high crop production, better soil protection, and ultimately to human health.  相似文献   

4.
Weeds are known to cause enormous losses due to their interference in agroecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard the phenomenon of allelopathy, which is expressed through the release of chemicals by a plant, has been suggested to be one of the possible alternatives for achieving sustainable weed management. The use of allelopathy for controlling weeds could be either through directly utilizing natural allelopathic interactions, particularly of crop plants, or by using allelochemicals as natural herbicides. In the former case, a number of crop plants with allelopathic potential can be used as cover, smother, and green manure crops for managing weeds by making desired manipulations in the cultural practices and cropping patterns. These can be suitably rotated or intercropped with main crops to manage the target weeds (including parasitic ones) selectively. Even the crop mulch/residues can also give desirable benefits. Not only the terrestrial weeds, even allelopathy can be suitably manipulated for the management of aquatic weeds. The allelochemicals present in the higher plants as well as in the microbes can be directly used for weed management on the pattern of herbicides. Their bioefficacy can be enhanced by structural changes or the synthesis of chemical analogues based on them. Further, in order to enhance the potential of allelopathic crops, several improvements can be made with the use of biotechnology or genomics and proteomics. In this context either the production of allelochemicals can be enhanced or the transgenics with foreign genes encoding for a particular weed-suppressing allelochemical could be produced. In the former, both conventional breeding and molecular genetical techniques are useful. However, with conventional breeding being slow and difficult, more emphasis is laid on the use of modern techniques such as molecular markers and the selection aided by them. Although the progress in this regard is slow, nevertheless some promising results are coming and more are expected in future. This review attempts to discuss all these aspects of allelopathy for the sustainable management of weeds. Referee: Dr. Amrjits S. Basra, Central Plains Crop Technology, 5912 North Meridian Avenue, Wichita, KS 67204  相似文献   

5.
6.
The ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO2 removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low-tech and cost-effective means for removing CO2 from the atmosphere while also delivering co-benefits to people and ecosystems. Our model estimates suggest that, assuming additive effects, the technical potential of combined SCS practices can provide 30%–70% of the carbon removal required by the Paris Climate Agreement if applied to 25%–50% of the available global land area, respectively. Atmospheric CO2 drawdown via SCS has the potential to last decades to centuries, although more research is needed to determine the long-term viability at scale and the durability of the carbon stored. Regardless of these research needs, we argue that SCS can at least serve as a bridging technology, reducing atmospheric CO2 in the short term while energy and transportation systems adapt to a low-C economy. Soil C sequestration in working lands holds promise as a climate change mitigation tool, but the current rate of implementation remains too slow to make significant progress toward global emissions goals by 2050. Outreach and education, methodology development for C offset registries, improved access to materials and supplies, and improved research networks are needed to accelerate the rate of SCS practice implementation. Herein, we present an argument for the immediate adoption of SCS practices in working lands and recommendations for improved implementation.  相似文献   

7.
Cogongrass is considered to be one of the ten most troublesome and problematic weedy species in the world. This species is found throughout tropical and subtropical regions, generally in areas disturbed by human activities. Over 100 common names have been associated with cogongrass, including japgrass, speargrass, alang-alang, and bladygrass. Although this species has several commercial uses, the problems associated with its weediness far outweigh most positive benefits. Cogongrass is a major impediment to reforestation efforts in southeast Asia, the number one weed in agronomic and vegetable production in many parts of Africa, and is responsible for thousands of hectares of lost native habitat in the southeastern U.S. Biologically, cogongrass possesses several features that foster its spread and persistence. Management efforts for cogongrass consist of an integrated approach with several control strategies. In agronomic production, the use of cover crops is widely successful, but incorporation into the overall production scheme is challenging. Success has been achieved with continuous deep tillage or chemical applications, but long-term eradication/suppression must employ sustainable revegetation strategies.  相似文献   

8.
Witt  C.  Cassman  K.G.  Olk  D.C.  Biker  U.  Liboon  S.P.  Samson  M.I.  Ottow  J.C.G. 《Plant and Soil》2000,225(1-2):263-278
The effects of soil aeration, N fertilizer, and crop residue management on crop performance, soil N supply, organic carbon (C) and nitrogen (N) content were evaluated in two annual double-crop systems for a 2-year period (1994–1995). In the maize-rice (M-R) rotation, maize (Zea mays, L.) was grown in aerated soil in the dry season (DS) followed by rice (Oriza sativa, L.) grown in flooded soil in the wet season (WS). In the continuous rice system (R-R), rice was grown in flooded soil in both the DS and WS. Subplot treatments within cropping-system main plots were N fertilizer rates, including a control without applied N. In the second year, sub-subplot treatments with early or late crop residue incorporation were initiated after the 1995 DS maize or rice crop. Soil N supply and plant N uptake of 1995 WS rice were sensitive to the timing of residue incorporation. Early residue corporation improved the congruence between soil N supply and crop demand although the size of this effect was influenced by the amount and quality of incorporated residue. Grain yields were 13-20% greater with early compared to late residue incorporation in R-R treatments without applied N or with moderate rates of applied N. Although substitution of maize for rice in the DS greatly reduced the amount of time soils remained submerged, the direct effects of crop rotation on plant growth and N uptake in the WS rice crops were small. However, replacement of DS rice by maize caused a reduction in soil C and N sequestration due to a 33–41% increase in the estimated amount of mineralized C and less N input from biological N fixation during the DS maize crop. As a result, there was 11–12% more C sequestration and 5–12% more N accumulation in soils continuously cropped with rice than in the M-R rotation with the greater amounts sequestered in N-fertilized treatments. These results document the capacity of continuous, irrigated rice systems to sequester C and N during relatively short time periods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Obi  M.E. 《Plant and Soil》1999,211(2):165-172
The physical and chemical responses of a degraded sandy clay loam Ultisol to two leguminous and four grass cover crops in southern Nigeria were studied after five years to assess the rejuvenative effects of the covers. There were relative increases of 26% and 112% in soil organic carbon and phosphorus levels and also appreciable improvements in the CEC and Ca levels under vegetative covers compared with the initial conditions. The improvements were more pronounced with legume covers than with grass covers. Furthermore, the vegetative covers improved mean organic carbon level by 28% and appreciably improved mean CEC, Ca, and Mg levels over the values for the bare soils. The percentage of water-stable aggregates >1.0 mm was significantly reduced under bare fallow ( = 27.7%) compared with soils under vegetative cover = 79.3%). The correlation between water-stable aggregates > 1.0 mm and exchangeable aluminum was negative and significant (r = −0.705°) at p = 0.05. There were highly significant treatment effects (P = 0.01) for penetrometer resistance, pore size distribution, water infiltration, water retention and saturated hydraulic conductivity. Grass and legume fallows which protect the soil and guarantee regular additions of organic materials are ecologically sound and socially acceptable components of sustainable agricultural production. Indications, however, are that this degraded tropical Ultisol would require a period exceeding five years under vegetative covers for restoration of its fertility to acceptable productive status. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Humanity is facing possibly the greatest challenge in its history. Population is expected to reach 9 billion in 2030. At the same time agricultural land is becoming scarcer and poorer in quality. Furthermore, the environmental impact of intensive agriculture and the effects of climate change are threatening food security in many regions of the globe. Further, shortage of fossil fuels will have dramatic effects on the performance of intensive agriculture. There is an urge to develop more ecological agricultural practices both to meet the need to preserve agroecosystems health and to deal with the reduced availability of “cheap” energy from fossil fuels. This paper reviews a number of studies comparing the performances of conventional and organic agriculture in light of energy use, CO 2 emission and other environmental issues. Organic agriculture, along with other low input agriculture practices, results in less energy demand compared to intensive agriculture and could represent a means to improve energy savings and CO2 abatement if adopted on a large scale. At the same time it can provide a number of important environmental and social services, such as preserving and improving soil quality, increasing carbon sink, minimizing water use, preserving biodiversity, halting the use of harmful chemicals, thereby guaranteeing healthy food to consumers. We claim that more work should be done in terms of research and investment to explore the potential of organic farming for reducing environmental impact of agricultural practices. However, in the case of organic agriculture, the implications of a reduced productivity for the socioeconomic system should be considered and suitable agricultural policies worked out.  相似文献   

11.
Applying biochar to agricultural soils has been proposed as a means of sequestering carbon (C) while simultaneously enhancing soil health and agricultural sustainability. However, our understanding of the long‐term effects of biochar and annual versus perennial cropping systems and their interactions on soil properties under field conditions is limited. We quantified changes in soil C concentration and stocks, and other soil properties 6 years after biochar applications to corn (Zea mays L.) and dedicated bioenergy crops on a Midwestern US soil. Treatments were as follows: no‐till continuous corn, Liberty switchgrass (Panicum virgatum L.), and low‐diversity prairie grasses, 45% big bluestem (Andropogon gerardii), 45% Indiangrass (Sorghastrum nutans), and 10% sideoats grama (Bouteloua curtipendula), as main plots, and wood biochar (9.3 Mg/ha with 63% total C) and no biochar applications as subplots. Biochar‐amended plots accumulated more C (14.07 Mg soil C/ha vs. 2.25 Mg soil C/ha) than non‐biochar‐amended plots in the 0–30 cm soil depth but other soil properties were not significantly affected by the biochar amendments. The total increase in C stocks in the biochar‐amended plots was nearly twice (14.07 Mg soil C/ha) the amount of C added with biochar 6 years earlier (7.25 Mg biochar C/ha), suggesting a negative priming effect of biochar on formation and/or mineralization of native soil organic C. Dedicated bioenergy crops increased soil C concentration by 79% and improved both aggregation and plant available water in the 0–5 cm soil depth. Biochar did not interact with the cropping systems. Overall, biochar has the potential to increase soil C stocks both directly and through negative priming, but, in this study, it had limited effects on other soil properties after 6 years.  相似文献   

12.
13.
黄土高原土壤侵蚀作物覆盖因子计算   总被引:42,自引:4,他引:42  
张岩  刘宝元  史培军  江忠善 《生态学报》2001,21(7):1050-1056
土地利用方式以及不同农作物对土壤流失有明显的影响,定量评价不同作物在土壤流失中的作用(作物覆盖因子)是土地利用和水土保持规划的重要依据。研究的目的在于计算黄土高原主要农作物不同生长阶段的土壤流失强度与裸露地的比率,为计算土壤侵蚀作物覆盖因子应用。通过对甘肃天水和陕西安塞水土保持试验资料的分析,计算了7种主要作物6个农作期的土壤流失比率表,并对黄土高原7种作物覆盖因子进行了计算,其值在0.23-0.74之间,按此方法计算的作物覆盖因子值与观测多年平均土壤流失比率基本一致。但该方法的优势在于可以根据土壤流失比率表和不同的降雨侵蚀力分布曲线计算不同地区的C值,而不需对每个地区都进行小区观测。  相似文献   

14.
Phiri  S.  Barrios  E.  Rao  I.M.  Singh  B.R. 《Plant and Soil》2001,231(2):211-223
Acquisition of soil and fertiliser phosphorus (P) by crops depends on soil and plant properties. Soil processes determining P availability to plants are P solubility/sorption, P transport, root/soil contact and mineralisation/immobilisation. Plants have evolved properties contributing to a more efficient use of plant-available soil P and to mobilise P from less available soil P fractions. Agronomic measures may affect P availability to crops through the modification of soil properties or through direct quantitative and qualitative crop impact on soil P dynamics. Among the agronomic measures, the application of organic matter such as green manure and crop residues to maintain or increase soil organic matter content and to enhance soil biological activity, and the incorporation into the cropping system of P-mobilising plant species are particularly beneficial.Our experimental activities have concentrated on the characterisation of the P mobilising capacity of different leguminous grain and cover crops, and their effect on P availability to less P-efficient cereals grown in mixed culture and in rotation. Fractionation of P in the rhizosphere soil revealed the capacity of some legumes to better use P from sparingly soluble soil P fractions than maize. Field experiments conducted on 2 sites in the Northern Guinea Savannah of Nigeria and accompanying green-house pot experiments revealed a positive rotational effect of P-efficient cover crops on maize growth and grain yield with and without the return of crop residues. This could unequivocally be attributed to a better P supply to maize, especially on strongly P-fixing soil. However, the residual effect was small compared to the application of water-soluble P fertiliser. This clearly indicates the need for a maintenance application of fertiliser P in addition to the agronomic measures for sustainable crop production.  相似文献   

15.
16.
Many biological functions of soil organisms are replaced in intensive agricultural systems, but earthworms and other soil invertebrates may continue to have significant effects on nutrient cycling in these disturbed systems. We investigated the influence of earthworms on leaching of water and nitrogen in corn (Zea mays L.) agroecosystems in a long-term (6-year) field experiment in Wooster, Ohio, USA. We employed a split-plot experimental design in which main plots received one of three nutrient treatments (cow manure, legume–grass mixture, inorganic fertilizer) and contained three 4.5 × 4.5-m field enclosures in which earthworm populations were increased, decreased, or unmodified. We installed zero-tension lysimeters beneath enclosures with increased or decreased populations and collected leachates regularly in 1996, analyzing them for water volume and concentrations of NH4+, NO3, and dissolved organic nitrogen (DON). Earthworms did not influence concentrations of inorganic N or DON but greatly increased leachate volume. The total flux of N in soil leachates was 2.5-fold greater in plots with increased earthworm populations than in those with decreased populations. Earthworm population density was positively correlated with total N leaching flux (r2 = 0.49). Leaching losses of N to a depth of 45 cm were greater in the inorganically fertilized than in the organically fertilized plots, possibly due to greater inorganic N concentrations and lower immobilization potential in inorganically fertilized systems. Our results indicate that earthworms can increase the leaching of water and nitrogen to greater soil depths, potentially increasing N leaching from the system.Present address: Departamento de Ecoloxia e Bioloxía Animal, Universidade de Vigo, E-36200, Spain. Present address: Archbold Biological Station, 300 Buck Island Ranch Rd., Lake Placid, Florida 33852, USA. ¶Present address: P.O. Box 303, Yucca Valley, California 92286, USA.  相似文献   

17.
Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split‐plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 μL L?1 and elevated CO2=683 μL L?1) as split‐plots using open‐top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no‐tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0–5 cm depth increment in the conservation system under CO2‐enriched conditions. Smaller shifts in soil C were noted at greater depths (5–10 and 15–30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover.  相似文献   

18.
Biodiversity loss, an important consequence of agricultural intensification, can lead to reductions in agroecosystem functions and services. Increasing crop diversity through rotation may alleviate these negative consequences by restoring positive aboveground–belowground interactions. Positive impacts of aboveground biodiversity on belowground communities and processes have primarily been observed in natural systems. Here, we test for the effects of increased diversity in an agroecosystem, where plant diversity is increased over time through crop rotation. As crop diversity increased from one to five species, distinct soil microbial communities were related to increases in soil aggregation, organic carbon, total nitrogen, microbial activity and decreases in the carbon‐to‐nitrogen acquiring enzyme activity ratio. This study indicates positive biodiversity–function relationships in agroecosystems, driven by interactions between rotational and microbial diversity. By increasing the quantity, quality and chemical diversity of residues, high diversity rotations can sustain soil biological communities, with positive effects on soil organic matter and soil fertility.  相似文献   

19.
肖明  董楠  吕新 《生态学杂志》2015,26(8):2571-2580
可持续农业概念提出30多年,世界各地区都有不同的认识.我国类似的概念被称作生态农业,历经几十年的实践,在理论、模式及配套技术上都有了认识总结,但迄今仍然缺乏明确界定的应用指导.欧盟提出的有机农业模式现在被广为接受,但其受益群体和承担的社会责任、生态责任均有一定的局限性.针对以上问题,本文从生态学角度出发,分析了生态失衡弊端对农产品质量安全的负面影响,提出了可持续安全农产品概念.支持该概念的农业生产模式追求两方面的价值,一是拥有一个健康的生态圈环境作为农业产业平台,二是能从这个产业平台可持续地获取安全农产品.围绕该概念的核心价值,设计了生产可持续安全农产品的农业构建模式,同时提出了对不可逆、不可控、难修复的农艺措施在改良之前放弃使用的原则.最后通过与有机农业在承担责任、受益群体、农艺措施选用以及对转基因技术的认识等方面进行对比,反证可持续安全农业模式下生产的农产品在数量安全、质量安全上的先进性.  相似文献   

20.
Autotoxic potential of cucurbit crops   总被引:20,自引:1,他引:20  
Yu  Jing Quan  Shou  Sen Yan  Qian  Ya Rong  Zhu  Zhu Jun  Hu  Wen Hai 《Plant and Soil》2000,223(1-2):149-153
Soil sickness is often observed in cucurbit crops such as Citrullus lanatus, Cucumis melo and Cucumis sativus, but not in cucurbit crops such as Cucurbita moschata, Lagenaria leucantha and Luffa cylindrica. Results showed that root aqueous extracts of Citrullus lanatus, Cucumis melo and Cucumis sativus were autotoxic, but those of Cucurbita moschata, Momordica charantia and Luffa cylindrica were less autotoxic to the radicle elongation of respective species. Plant growth of Citrullus lanatus, Cucumis melo and Cucumis sativus were greatly inhibited by autotoxic substances released from powered root tissue at a rate of 1 g per seedling. Root exudates of Citrullus lanatus, Cucumis melo and Cucumis sativus were autotoxic to radicle elongation and seedling growth of respective species. However, root exudates of Citrullus lanatus did not inhibit radicle elongation of Cucurbita ficifolia, which is commonly used as rootstock for the grafting of Citrullus lanatus, Cucumis melo and Cucumis sativus to decrease soil-borne diseases in commercial production. It seems possible to overcome autotoxicity in cucurbit crops by grafting on Cucurbita ficifolia. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号