首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.  相似文献   

2.
Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate that an HSV-1 amplicon expressing the AAV-2 genes rep and cap along with HSV-1 helper functions supports the replication and packaging of rAAV vectors in a scaleable process.  相似文献   

3.
Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/AUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/AUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28×104 particles per cell. Therefore, compared  相似文献   

4.
Recombinant retroviruses are now an established tool for gene delivery. Presently they are mainly produced using adherent cells. However, due to the restrictive nature of adherent cell culture, this mode of production is hampered by low cell-specific productivity and small production units. The large-scale production of retroviral vectors could benefit from the adaptation of retrovirus packaging cell lines to suspension culture. Here, we describe the ability of a 293 packaging cell line to produce retroviral vectors in suspension culture at high titer. Adherent 293GPG cells, producing a Moloney Murine Leukemia Virus (MoMLV) retrovirus vector pseudotyped with the vesicular stomatitis virus G (VSVG) envelope protein and expressing a TK-GFP fusion protein, were adapted to suspension culture in calcium-free DMEM. At a cell density similar to adherent cell culture, the suspension culture produced retroviral vector consistently in the range of 1 x 10(7) infectious viral particles/mL (IVP/mL), with a specific productivity threefold higher than adherent culture. Furthermore, at the same medium replacement frequency, the suspension producer cells could be cultured at higher density than their adherent counterparts, which resulted in virus titer of 3-4 x 10(7) IVP/mL at 11.0 x 10(6) cells/mL. This corresponds to a 10-fold increase in viral concentration compared to adherent cells. The capacity to up scale the retroviral vector production was also demonstrated by performing a 2 VVD perfusion culture for 9 days in a 3L Chemap bioreactor. The combination of suspension and perfusion led to a 20-fold increase in maximum virus productivity compared to the adherent culture.  相似文献   

5.
6.
Replication-defective genomic herpes simplex vectors: design and production   总被引:4,自引:0,他引:4  
Herpes simplex virus (HSV) may be engineered to produce flexible and efficient gene delivery vectors. Recent advances in vector design and production have built on increasing understanding of the basic biology of HSV to minimise vector toxicity and exploit viral features that give rise to lifelong latent infection in the nervous system. In addition, the emerging picture of viral cell entry has allowed early steps to be taken towards targeting viral entry to predetermined cellular subsets. Recent work has established sound principles for the straightforward production of large-scale pure preparations of vector stocks for clinical applications.  相似文献   

7.
Our work uses replication-defective genomic herpes simplex virus type-1 (HSV-1)-based vectors to transfer therapeutic genes into cells of the central nervous system and other tissues. Obtaining highly purified high-titer vector stocks is one of the major obstacles remaining in the use of these vectors in gene therapy applications. We have examined the effects of temperature and media conditions on the half-life of HSV-1 vectors. The results reveal that HSV stability is 2.5-fold greater at 33 degrees C than at 37 degrees C and is further stabilized at 4 degrees C. Additionally, a significantly higher half-life was measured for the vector in infection culture conditioned serum medium compared to fresh medium with or without serum. Synchronous infections incubated at 33 degrees C produced 2-fold higher amounts of vector than infected cells incubated at 37 degrees C, but with a lag of 16-24 h. Vector production yielded 3-fold higher titers and remained stable at peak levels for a longer period of time in cultures incubated at 33 degrees C than 37 degrees C. A pronounced negative effect of increased cell passage number on vector yield was observed. Vector production at 33 degrees C yielded similar levels regardless of passage number but was reduced at 37 degrees C as passage number increased. Together, these results contribute to improved methods for high-titer HSV vector production.  相似文献   

8.
Herpes simplex virus type-1 (HSV-1) represents a unique vehicle for the introduction of foreign DNA to cells of a variety of tissues. The nature of the vector, the cell line used for propagation of the vector, and the culture conditions will significantly impact vector yield. An ideal vector should be deficient in genes essential for replication as well as those that contribute to its cytotoxicity. Advances in the engineering of replication-defective HSV-1 vectors to reduce vector-associated cytotoxicity and attain sustained expression of target genes make HSV-1 an attractive gene-delivery vehicle. However, the yield of the less-cytotoxic vectors produced in standard tissue-culture systems is at least three order of magnitudes lower than that achieved with wild-type virus. The low overall yield and the complexity involved in the preparation of HSV vectors at high concentrations represent major obstacles in use of replication-defective HSV-derived vectors in gene therapy applications. In this work, the dependence of the vector yield on the genetic background of the virus is examined. In addition, we investigated the production of the least toxic, lowest-yield vector in a CellCube bioreactor system. After initial optimization of the operational parameters of the cellcube system, we were able to attain virus yields similar to or better than those values attained using the tissue culture flask system for vector production with significant savings with respect to time, labor, and cost.  相似文献   

9.
10.
The production and extracellular release of a recombinant Herpes Simplex Virus (type 2) from monolayers of infected complementing Vero cells (CR2) are addressed. Growth and virus production conditions are identified that provide adequate virus titers with cell seeding densities and viral multiplicities of infection that could be reasonably handled in manufacturing. Harvesting by sonication of cell monolayers is shown to give the highest recovery of infectious virus (to 2.5 x 10(6) pfu/mL) but leads to process stream contamination by cellular proteins through the rupturing of cells (to 28 pg protein/pfu). By comparison, freeze-thaw cycles and osmotic rupture by hypotonic saline or glycerol shock procedures yield only low virus recovery (typically <10% of that by sonication), and are accompanied by yet higher levels of protein contamination (up to 30-fold higher pg protein/pfu). Addition of the polyanionic polymers, heparin or dextran sulphate to a harvest using either hypotonic saline, glycerol shock or isotonic phosphate buffered saline increased the yield of infectious virus in the supernatant. By contrast, addition of polycationic poly-L-lysine resulted in negligible increase in the supernatant virus titer. The highest virus titers (4.7 x 10(7) pfu/mL) were achieved following treatment of roller bottle cultured cells displaying a high cytopathic effect with heparin at 50 microg/mL for at least 3 h post harvest. This procedure also gave the lowest levels of protein contamination (<2 pg protein/pfu). The fivefold lower yield of infectious virus from cultures displaying a low cytopathic effect (<70% CPE) indicates the importance of cell physiological state at harvest.  相似文献   

11.
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.  相似文献   

12.
Despite continuous improvements in culturing and recovery techniques, high-titer stocks of purified disabled herpes simplex virus type-1 (HSV-1 DIS) vector for drug discovery and use in preclinical and clinical trials are currently difficult to achieve. Efforts to improve their centrifugal recovery have been addressed in this paper. The operation of a swing-out centrifuge rotor was assessed, and its operational conditions were defined for the recovery of viable HSV-1 DIS. 80% virus recovery was achieved after 90 min at 26000g. The 20% loss of virus was attributed to damage to the viral envelope by overcompaction of the pellet and impaction with the base of the centrifuge tube. Virus recovery was increased by a further 10% by using a fixed-angle centrifuge rotor operating at 26000g. Plaque assays of recovered HSV-1 DIS gave values on the order of 10(6) pfu/mL, compared to values typically above 10(9) pfu/mL obtained for the replication-competent HSV-1 viron.  相似文献   

13.
Recombinant adeno-associated virus(rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1(rHSV-1) designated HSV1-rc/△UL2, which expressed adeno-associated virus type2(AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein(GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/△UL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit(TU) or 4.28×104 particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.  相似文献   

14.
The use of lentiviral vectors as gene delivery vehicles has become increasingly popular in recent years. The growing interest in these vectors has created a strong demand for large volumes of vector stocks, which entails the need for scaleable vector manufacturing procedures. In this work, we present a simple and robust process for the production of lentiviral vectors using scaleable production and purification methodologies. Lentivirus particles were produced by transient transfection of serum-free suspension-growing 293 EBNA-1 cells with four plasmids encoding the vector components using linear polyethylenimine (PEI) as transfection reagent. This process was successfully scaled-up from shake flasks to a 3-L bioreactor from which 10(10) IVP were recovered. In addition, an affinity chromatography protocol designed for purification of bioactive oncoretroviral vectors has been adapted in this work for the purification of VSV-G pseudotyped lentiviral vectors. Using heparin affinity chromatography, lentiviral particles were concentrated and purified directly from the clarified supernatants. During this step, a recovery of 53% of infective lentiviral particles was achieved while removing 94% of the impurities contained in the supernatant.  相似文献   

15.
16.
BACKGROUND: To facilitate the application of adenoviral gene therapy in clinical heart transplantation, we developed an ex vivo hypothermic recirculatory adenoviral gene transfer method to the transplanted pig heart. METHODS: Experimental animals were assigned into three groups; controls, 1x10(8) plaque-forming units (pfu)/ml group and 1x10(9) pfu/ml group. During the 30 min gene transfer perfusion, 200 ml of University of Wisconsin solution containing the adenoviral vector was recirculated through the coronary vessels. The myocardial temperature was maintained below 4 degrees C and the perfusion pressure was adjusted at 50 mmHg. RESULTS: Cardiac myocyte transduction efficiencies in the 1x10(8) pfu/ml group were 0.04% and 0.07%, whereas transduction efficiencies in the 1x10(9) pfu/ml group were widely distributed from 0.45% to 22.62%. The gene transduction efficiency increased with the virus titer. Additionally, no difference in the transduction efficiency was observed between different segments of the left ventricle. The current gene transfer method at 1x10(9) pfu/ml of adenovirus titer enabled homogeneous gene transduction into the transplanted pig heart up to a maximum of 22.62%. CONCLUSIONS: This model can be applied to a large isolated heart and will greatly facilitate the investigation of gene therapy in large animal models of heart transplantation.  相似文献   

17.
本研究组建了一种可用于规模化生产的以重组单纯疱疹病毒为辅助病毒的AAV5/5载体包装系统。首先,将5型腺相关病毒 (AAV5) 的rep和cap基因插入I型单纯疱疹病毒 (HSV-1) 基因组非必需基因UL2中,获得重组病毒rHSV1-rep5cap5。其次,构建一种携带AAV5 ITR的通用型载体质粒pAAV5neo,将报告基因EGFP插入pAAV5neo中,得到pAAV5neo-EGFP质粒。将pAAV5neo-EGFP质粒导入BHK-21细胞,用G418选择培养,挑选出表达EGFP并在重组病毒rHSV1-rep5cap5感染下能高效产生rAAV5/5-EGFP的单克隆载体细胞株C020。用rHSV1-rep5cap5感染C020细胞制备rAAV5/5-EGFP,用“氯仿处理-聚乙二醇/氯化钠-氯仿抽提”方法粗纯化rAAV5/5-EGFP。用100 kDa分子量截流超滤方法进一步纯化和浓缩,获得高纯度的rAAV5-EGFP。SDS-PAGE电泳分析可见3条特征性外壳蛋白带。电镜分析显示病毒颗粒以实心颗粒为主。用rAAV5/5-EGFP病毒按1×105 vg/cell感染体外培养的HEK293细胞,可见30%细胞呈现绿色荧光。本研究提出了一种高效AAV5/5载体生产系统和纯化方法,为重组AAV5载体的进一步应用提供了基础。  相似文献   

18.
The purpose of this study was to develop a cell culture process in a bioreactor for the production of a viral insecticide for the spruce budworm, Choristoneura fumiferana . Several cell lines were tested for their growth in serum-free medium suspension cultures. One cell line, CF-124T-2C1 (CF-2C1), was successfully adapted to grow in suspension cultures in SFM. Serum-free Ex-Cell 405 medium produced a much higher cell density (6.3 x 10 6 cells ml -1 ) than the Grace's medium supplemented with 10% fetal bovine serum (2.5 x 10 6 cells ml -1 ). Also, a higher yield of virus was obtained in the former medium. Ex-Cell 405, was used to study the growth of CF-2C1 cells and the production of C. fumiferana nucleopolyhedrovirus (CfMNPV) in a 3 l bioreactor. Under these conditions, a specific growth rate ( μ) of 0.027 h -1 was obtained during the exponential growth phase, and the specific carbon dioxide evolution rate, as determined by on-line measurement, was 0.9 x 10 -16 mol cell -1 s -1 and 1.78 x 10 -16 mol cell -1 s -1 during growth and infection phases, respectively. Virus production in bioreactor cultures infected at 1.3 x 10 6 cells ml -1 was consistently lower than that obtained in Erlenmeyer shake flasks. Only 26% of the cells were infected in the bioreactor compared to 44% in the shake flasks. However, a higher yield of occluded virus was obtained in the bioreactor cultures than in shake flasks. The production of occlusion bodies (OB) achieved in bioreactor cultures was 2 x 10 6 OB ml -1 .  相似文献   

19.
Male C3H/HeN mice, aged 5 weeks, were inoculated intraperitoneally (i.p.) with different doses (1 x 10(3), 1 x 10(5), 5 x 10(5), 1 x 10(6) pfu) of the herpes simplex virus type-1 (HSV-1) (Miyama + GC strain). The LD50 of this virus was 10(2) pfu (i.p.) per mouse. All the mice in each group died 12 days after inoculation. Adrenal necrosis was found to be dose-dependent, the threshold dose being 5 x 10(5) pfu. In addition, encephalitis and inflammatory cell infiltration in abdominal ganglia appeared in 3-4 days after inoculation. By the plaque method, HSV-1 was detected first in the adrenal glands, then in neurons in the spinal cord and the brain. These findings suggest that in mice inoculated with doses of virus sufficient to infect the adrenal gland, HSV-1 spreads to the central nervous system through peripheral nerves after replication in the adrenal.  相似文献   

20.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号