首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

2.
3.
Summary Human melanoma cells were treated with different concentrations of glutaraldehyde, and retention of serological reactivity with antisera against melanoma-associated antigens, HLA antigen, and 2-microglobulin was assessed by quantitative absorption analysis in mixed hemadsorption microassays. Glutaraldehyde concentrations of 0.025% or greater significantly impaired binding to melanoma cells of antibody against melanoma-associated antigens. At a concentration of 0.0025% antibody binding was not decreased although plating efficiency was reduced to less than 1%. Glutaraldehyde concentrations of 0.25% or greater significantly reduced binding to the same melanoma cells of antisera against HLA antigen and 2-microglobulin. Glutaraldehyde treatment (up to 2.5%) of HT-29 colon carcinoma cells failed to reduce reactivity of antisera against CEA and blood group A isoantigen, which are present on these cells. These studies indicate that the effect of glutaraldehyde treatment of cells on retention of surface antigens is critically dependent on the concentration of glutaraldehyde used and the type of antigens involved. Abbreviations used in this paper: MAA, melanoma-associated antigens; GA, glutaraldehyde; FCS, fetal calf serum; RPMI, Roswell Park Memorial Institute; 2M, 2-microglobulin; CEA, carcinoembryonic antigen; PBS, phosphate-buffered saline; NGP, normal glycoprotein cross-reacting with CEA; SRBC, sheep red blood cells  相似文献   

4.
Endo-beta-galactosidase, a glycosidase that hydrolyzes Gal beta 1-4 GlcNAc linkages in glycoconjugates, has been used to probe the plasma membrane of human erythrocytes. Coomassie blue staining of stroma components separated by sodium dodecyl sulfate-acrylamide gel electrophoresis indicates that treatment of red cells with endo-beta-galactosidase converts Protein 3, the anion transporter of the erythrocyte, to a more compact staining band. No other components detected by Coomassie staining are affected. Following labeling of red cells with galactose oxidase + NaB3H4, 45 to 50% of the [3H]galactose residues can be released by endo-beta-galactosidase. In contrast, only 5% of the label incorporated by treatment with periodate + NaB3H4, can be removed. [3H]Galactose residues are released from three components: Protein 3, Band 4.5, and the megaloglycolipids. The susceptibility of these components to endo-beta-galactosidase, together with the high content of Gal and GlcNAc present in Protein 3 and the megaloglycolipids, suggests that the erythrocyte membrane contains several components with N-acetyllactosamine repeating units, a structure commonly found in connective tissue glycoconjugates.  相似文献   

5.
6.
7.
Crosslinking of F-actin by a bifunctional reagent glutaraldehyde resulted in a marked decrease of viscosity and length of F-actin filaments. The extent and rate of superprecipitation of actomyosin reconstituted from the modified actin were lower than those of unmodified actin-myosin complex, but activation of heavy meromyosin ATPase by the crosslinked actin was higher than by unmodified one. Heavy meromyosin ATPase activated by the crosslinked actin was distinctly less dependent on KCl concentration than that activated by unmodified actin. Turbidity of the modified acto-heavy meromyosin in the presence of ATP exceeded the sum of turbidities of actin and heavy meromyosin, whereas in the case of unmodified acto-heavy meromyosin the turbidity was comparable to that for noninteracting system. The difference in activation of heavy meromyosin. ATPase by the cross-linked and unmodified actin, clearly seen at room temperature, significantly diminished when temperature was lowered to 0 degrees C.  相似文献   

8.
J P Yee  H C Mel 《Blood cells》1978,4(3):485-497
Red blood cells interact with glutaraldehyde (GA) in a complex kinetic pattern of events. At a given GA concentration in phosphate buffered saline (PBS), the sequence of cell 'volume' response, as measured by resistive pulse spectroscopy (RPS), includes: an immediate response to the overall solution osmolality; a constant volume, latent phase; a rapid swelling phase; an intermediate constant volume phase; and a shrinkage phase to a final steady state volume. The final volume depends on fixative solution osmolality; for GA concentrations between 0.05% and 0.25% w/v, fixative osmolalities of less than 355 mosM, including 'isotonic', or greater than 355 mosM, lead to final cell volumes greater or less than native, respectively. Cell-membrane deformability decreases continuously and monotonically with time, as assessed by RPS. The rate of fixation is a direct function of GA concentration, in accordance with a derived empirical expression. The measured kinetic responses are related to considerations of cell size, deformability, and form, and to mechanisms involved in abrupt osmotic hemolysis.  相似文献   

9.
10.
Large phosphatydilcholine unilamellar vesicles appear to be suitable controlled and protective delivery systems of beta-galactosidase. Kinetic measurements carried out on intact loaded liposomes show that most of the enzyme is entrapped inside the liposomes and its activity is latent. Nevertheless, intact liposomes also show significant activity, which can be controlled by addition of detergent. At sublytic detergent concentrations, liposome enzymatic activity reaches values two or three times greater than those of intact liposomes. This increase seems to be due to membrane structure modification that also enhances the substrate permeability across the bilayer. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 261-266, 1997.  相似文献   

11.
K Sekiguchi  A Asano 《Life sciences》1976,18(12):1383-1389
Colchicine was found to stimulate the virus-induced fusion of human erythrocytes. Colchicine also stimulated the rate of hemolysis, but had no effect on its final extent, suggesting that the enhanced rate of envelope fusion, i. e. virus to cell, caused by colchicine resulted in the stimulation of cell to cell fusion. The fact that effective doses of colchicine were at millimolar concentrations, together with the absence of microtubules in human erythrocytes, indicates that the target of colchicine action is not this subcellular tubular system. Instead, the peripheral membrane protein, spectrin, may be a likely candidate for the site of colchicine action.  相似文献   

12.
13.
14.
15.
16.
Effect of hydration on the water content of human erythrocytes.   总被引:4,自引:0,他引:4       下载免费PDF全文
An ideal, hydrated, nondilute pseudobinary salt-protein-water solution model of the RBC intracellular solution has been developed to describe the osmotic behavior of human erythrocytes during freezing and thawing. Because of the hydration of intracellular solutes (mostly cell proteins), our analytical results predict that at least 16.65% of the isotonic cell water content will be retained within RBCs placed in hypertonic solutions. These findings are consistent not only with the experimental measurements of the amount of isotonic cell water retained within RBCs subjected to nonisotonic extracellular solutions (20-32%) but also with the experimental evidence that all of the water within RBCs is solvent water. By modeling the RBC intracellular solution as a hydrated salt-protein-water solution, no anomalous osmotic behavior is apparent.  相似文献   

17.
G Rapatz  B Luyet  A MacKenzie 《Cryobiology》1975,12(4):293-308
Human erythrocytes suspended in a sodium-free buffered salt solution containing glycerol in 1 m concentration (1 part of packed cells to 4 parts buffered salt solution) were frozen by slow, moderately rapid, or very rapid cooling to various subzero C temperatures. The frozen specimens, after a 5-min storage period at a given temperature, were thawed at low, moderately high, or very high rates. The hemolysis in the frozen and thawed samples was measured by a colorimetric determination of the hemoglobin released from the damaged cells. At ?10 °C, the highest freezing temperature employed, nearly 100% recovery of intact erythrocytes was obtained irrespective of the cooling and rewarming conditions. The extent of the hemolysis after exposure to lower freezing temperatures depended upon the cooling and rewarming conditions. Moderately rapid and very rapid freezing to, and thawing from temperatures below ?40 °C permitted significantly higher recoveries of intact cells than the other freezing/ thawing combinations. In the temperature range ?15 to ?30 °C the combination slow cooling and slow rewarming afforded maximum protection. Very rapid freezing/ slow thawing was the most damaging combination throughout the entire freezing range. The results were interpreted in part by a conventional two-factor analysis, lower cooling rates allowing concentrated salts to determine hemolysis, higher cooling rates destroying the cells by intracellular freezing. Apparent anomalies were explained in terms of a generalized “thermal/osmotic” shock according to which the erythrocytes were subject to greater hemolysis the higher the rates of cooling and/or warming.  相似文献   

18.
19.
A group of Babesia bovis antigens obtained by a lengthy biochemical procedure involving disruption of infected erythrocytes has previously been shown to be highly protective. This study shows that these antigens can be found in a simple lysate of infected erythrocytes. The antigens have been characterized by gel filtration and nitrocellulose transfer and consist of a wide spectrum of molecular sizes. Some of the antigens exist in complex form and are easily dissociated. The lysate was polymerized with glutaraldehyde and injected per se into four splenectomized calves. All the calves produced antibody to B. bovis but did not produce erythrocytic isoantibodies. The vaccinated calves and a control group of four splenectomized calves were challenged with virulent B. bovis. Statistically, the vaccinated group differed significantly in parasitaemia, temperature change and pathophysiological parameters from the control group. All of the control group died whereas two of the vaccinated group survived infection.  相似文献   

20.
In this work we have examined the effect of the oral administration of propionyl-L-carnitine (PLC) on the membrane phospholipid fatty acid turnover of erythrocytes from streptozotocin-induced diabetic rats. A statistically significant reduction in radioactive palmitate, oleate, and linoleate, but not arachidonate, incorporation into membrane phosphatidylcholine (PC) of diabetic rat erythrocytes with respect to control animals was found. Changes in radioactive fatty acid incorporation were also found in diabetic red cell phosphatidylethanolamine (PE), though they were not statistically significant. Oral propionyl-L-carnitine (PLC) treatment of diabetic rats partially restored the ability of intact red cells to reacylate membrane PC with palmitate and oleate, and reacylation with linoleate was fully restored. The analysis of the membrane phospholipid fatty acid composition revealed a consistent increase of linoleate levels in diabetic rat red cells, and a modest decrease of palmitate, oleate and arachidonate. The phospholipid fatty acid composition of diabetic red blood cells was not affected by the PLC treatment. Lysophosphatidylcholine acyl-CoA transferase (LAT) specific activity measured with either palmitoyl-CoA or oleyl-CoA was significantly reduced in diabetic erythrocyte membranes in comparison to controls. In addition LAT kinetic parameters of diabetic erythrocytes were altered. The reduced LAT activity could be partially corrected by PLC treatment of diabetic rats. Our data suggest that the impaired erythrocyte membrane physiological expression induced by the diabetic disease may be attenuated by the beneficial activity of PLC on the red cell membrane phospholipid fatty acid turnover.Abbreviations LAT lysophosphatidylcholine acyl-CoA transferase - PC phosphatidylcholine - PE phosphatidylethanolamine - PLC propionyl-L-carnitine - STZ streptozotocin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号