首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wong BT  Lee DJ 《Bioresource technology》2011,102(3):2427-2432
The effects of sulfide on nitrate reduction and methanogenesis using butyrate as a carbon source were investigated in a mixed mesophilic, methanogenic culture. In the sulfide-free medium, 25-75 mg l−1 nitrate markedly inhibited the efficiencies of acetogenesis and methanogenesis processes. Adding 25 mg-S l−1 increased methane production in nitrate-amended medium. Low sulfide levels shifted the nitrate reduction pathway from denitrification to dissimilatory nitrate reduction to ammonia (DNRA), thereby reducing the amounts of toxic nitric oxide and nitrous oxide produced that inhibit methanogenesis. The dose of 25 mg l−1 sulfide was oxidized completely, during which heterotrophic DNRA predominated. The oxidized forms of sulfide reformed, limiting induction of the heterotrophic denitrification pathway. The actions of heterotrophic and autotrophic DNRA bacteria, denitrifiers, sulfate-reducing bacteria and methanogens mitigate nitrate toxicity during methanogenesis in an anaerobic process.  相似文献   

2.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

3.
Biodegradability of fluorene and the versatility of fluorene metabolite (i.e. phenol) in fluorene biodegradation by a sulfate-reducing enrichment culture were investigated. Batch experiments (with 5 mg l−1 fluorene) were designed via the central composite design to examine the effects of sulfate (5-35 mM) and biomass (5-50 mg l−1) concentrations (variables) on fluorene degradation (response). The experimental results revealed that fluorene removal was more influenced by the biomass concentration than the sulfate concentration. The optimal sulfate and biomass concentrations for fluorene biodegradation (90% removal) were found to be 14.4 mM and 37.8 mg l−1, respectively. Under the optimal conditions, a set of biodegradation experiments were repeated to evaluate both the biodegradability of fluorene metabolite and the potential effect of phenol accumulation on fluorene degradation. The outcomes indicated a slow phenol degradation rate, i.e. 0.02 mg l−1 d−1. Moreover, a small reduction in the fluorene biodegradation efficiency was observed in the presence and accumulation of phenol. However, this sulfate reducing culture is a valuable resource for the simultaneous degradation of fluorene and phenol.  相似文献   

4.
Zhou X  Chen C  Wang A  Liu LH  Ho KL  Ren N  Lee DJ 《Bioresource technology》2011,102(8):5244-5247
Rapid formation of denitrifying sulfide removal granules is of practical interest to start up an expanded granular sludge bed reactor for wastewater treatment. This study demonstrates that methanogenic granules can be easily acclimated into DSR granules in one day, removing all 1.30 kg m−3 d−1 sulfide and converting >90% of 0.56 kg-N m−3d−1 nitrate into di-nitrogen gas. Under high loadings, reactor performance, however, declined. Under high loading rates, sulfide first inhibited the heterotrophic denitrifier (Caldithrix sp.), thereby accumulating nitrite in the system; the autotrophic denitrifier (Pseudomonas sp. C23) was then inhibited by accumulated nitrite, leading to breakdown of the entire DSR process.  相似文献   

5.
Ho KL  Lee DJ 《Bioresource technology》2011,102(18):8547-8549
Harvesting biohydrogen from inhibiting wastewaters is of practical interest since the toxicity of compounds in a wastewater stream commonly prevents the bioenergy content being recovered. The isolated Clostridium sp. R1 is utilized to degrade cellobiose in sulfide or nitrite-containing medium for biohydrogen production. The strain can effectively degrade cellobiose free of severe inhibitory effects at up to 200 mg l−1 sulfide or to 5 mg l−1 nitrite, yielding hydrogen at >2.0 mol H2 mol−1 cellobiose. Principal metabolites of cellobiose fermentation are acetate and butyrate, with the concentration of the former increases with increasing sulfide and nitrite concentrations. The isolated strain can yield hydrogen from cellobiose in sulfide-laden wastewaters. However, the present of nitrite significantly limit the efficiency of the biohydrogen harvesting process.  相似文献   

6.
This study investigated the anaerobic degradation of tetrachlorobisphenol-A (TCBPA) in sediment samples collected at three sites along the Erren River in southern Taiwan. TCBPA anaerobic degradation half-lives (t1/2) in the sediment were 12.6, 16.9 and 21.7 d at concentrations of 50, 100, and 250 ??g g−1, respectively. TCBPA (50 ??g g−1) anaerobic degradation half-lives (t1/2) in the sediment were 10.1, 11.8, 11.0, 11.6, 10.8, 9.1, 8.5, 18.2, 19.3, and 16.1 d by the addition of yeast extract (5 mg l−1), cellulose (0.96 mg l−1), sodium chloride (1%), brij 30 (130 mg l−1), brij 35 (43 mg l−1), rhamnolipid (55 ??M), surfactin (91 ??M), phthalic esters (2 mg l−1), nonylphenol (2 mg l−1), and heavy metals (2 mg l−1), respectively. The degradation rate of TCBPA was enhanced by the addition of yeast extract, cellulose, sodium chloride, brij 30, brij 35, rhamnolipid, or surfactin. However, it was inhibited by the addition of phthalic esters, nonylphenol, or heavy metals. Also noted was the presence of dichlorobisphenol-A and bisphenol-A, two intermediate products resulting from the anaerobic degradation of TCBPA accumulated in the sediments.  相似文献   

7.
The biogeochemical processes that drive nutrient transformations and recycling in organic marine sediment-water environments were studied for 17 months in a zero-effluent intensive recirculating culture system. The system consisted of a 10 m3 gilthead seabream (Sparus aurata) tank coupled to aerobic and anaerobic water treatment elements. Nutrients and alkalinity were measured in the system to quantify the main biogeochemical processes. Fractions of the carbon fed in feed were found in fish (18.3%) and in sludge (11%); the missing carbon was respired by fish (45%) and by aerobic (8.4%) and anaerobic (7.7%) microorganisms. Fractions of the nitrogen fed in feed were found in fish (15.4%) and in sludge (14.3%); the missing nitrogen was eliminated by nitrification-denitrification. Most of the phosphorus and ash fed in feed and not found in fish accumulated within the sludge in the system. The rates of nitrification, denitrification and sulphate reduction increased with time, reaching 0.3 g N m− 2 d− 1, 53 g N m− 2 d− 1 and 145 g S m− 2 d− 1, respectively. Nitrification developed more rapidly than denitrification, leading at first to nitrate accumulation (to 20 mmol NO3 l− 1 by day 200) and a decrease in alkalinity. Once denitrification surpassed nitrification, nitrate concentrations decreased, eventually being reduced to < 0.3 mmol NO3 l− 1 by day 510, and alkalinity stabilized. Toxic hydrogen sulphide, generated within the anaerobic sludge, was oxidized by oxygen and nitrate as it diffused through the anaerobic-aerobic sediment-water interface. When nitrate levels in the water above the sludge dropped below 2 mmol l− 1, sulphide was also oxidized in the fluidized bed reactor. Denitrification reduced nitrate in the water, respired (jointly with sulphate reduction) carbon in the sludge, oxidized the hydrogen sulphide, and contributed to stabilization of alkalinity and accumulation of polyphosphate in bacteria as a major sink of labile P.  相似文献   

8.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

9.
In many countries buffer strips have become an important management tool widely accepted for controlling the diffuse pollution and supporting the development of more sustainable agriculture. However, there is the need to investigate their role in intensive farming systems where a realistic and shareable proposal to realize buffer strips can only foresee the use of a limited space. We evaluated the nitrogen buffering capacities of two narrow riparian strips (5-8 m) along irrigation ditches located in a typical flat agricultural watershed of the alluvial plain of the River Po (Northern Italy). Subsurface water level and nutrient concentrations were monitored along transects of piezometers installed from crop fields to ditches in two different areas. Spatial and temporal variation in water chemistry and hydrology were investigated to individuate the main processes (biological or physical) leading to groundwater nitrate depletion related to fertilization, pluviometric regime and seasonal variation. The results obtained indicate an elevated nitrate removal efficiency in both riparian areas. Compared to the high mean concentrations measured at the exit of the crop fields (10-90 mg l−1 N-NO3), nitrate levels within riparian sites can be very low, completely disappearing below the ditches. The patterns of some chemical species (O2, SO42− and HCO3) and the potential denitrification rates suggest that denitrification plays a predominant role in the N-NO3 depletion observed in the first few meters of the herbaceous strip. The key factors in the system are the elevated groundwater residence time and the effect of the evapotranspiration. The water uptake by woody vegetation affects the subsurface water to flow through the riparian zone and, at the same time, it contributes to completely remove the nitrate from the groundwater.Our findings also suggest the double role of riparian vegetation both in ecohydrological and biological terms. In fact the water uptake by trees affects the subsurface flow pattern and contributes to completely remove the nitrate in the riparian zone.  相似文献   

10.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

11.
Thirty-six programs have been set up to revegetate the degraded lake wetlands in east China since 2002. Most projects however faced deficiency of submerged macrophyte propagules. To solve the problem, alternative seedling sources must be found besides traditional field collection. This paper deals with an in vitro propagation protocol for two popularly used submerged macrophytes, Myriophyllum spicatum L. and Potamogeton crispus L. Full strength Murashige and Skoog-based liquid media (MS) plus 3% sucrose in addition to 0–2.0 mg l−1 6-benzylaminopurine (BA) and 0–1.0 mg l−1 indoleacetic acid (IAA) were tried for shoot regeneration. Meanwhile, full, half or quarter strength MS in addition to 0, 0.1 or 0.2 mg l−1 naphthaleneacetic acid (NAA) were tested for root induction, respectively. Results indicated that both species had the ability of regeneration from stem fragments in MS without further regulators. However, the addition of 2.0 mg l−1 BA with 0.2 or 1.0 mg l−1 IAA in MS drastically stimulated the regeneration efficiency of M. spicatum, while the addition of 2.0 mg l−1 BA with 0.2 or 0.5 mg l−1 IAA in MS significantly stimulated that of P. crispus. For root induction, full strength MS in combination with 0.1or 0.2 mg l−1 NAA was preferred by M. spicatum, and the same MS without or with 0.1 mg l−1 NAA was preferred by P. crispus. Seedlings of each species produced from tissue culture room had a 100% survival rate on clay, sandy loam or their mixture (1:1) in an artificial pond, and phenotypic plasticity was exhibited when the nutrient levels varied among the three types of sediments. This acclimation of seedlings helped develop the shoot and root systems, which ensured seedling quality and facilitated the transplantation. Our study has established an effective protocol to produce high quality seedlings for lake revegetation programs at a larger scale. Since the two species we tested represent different regeneration performances in nature but shared similar in vitro propagation conditions, this study has indicated a potentially wide use of the common media for preparing seedlings of other submerged macrophytes.  相似文献   

12.
Glaucium flavum Crantz. is found in an anthropized coastal grassland at the joint estuary of the Tinto and Odiel rivers (SW Spain), growing under the influence of high levels of copper contamination derived from nearby petrochemical industries, with no obvious adverse affects on the performance of the plant. In addition, this species exhibits a series of ecological characteristics which may render it appropriate for use in the phytoremediation of contaminated areas. Nonetheless, the response of G. flavum to elevated copper concentrations has not been studied. A greenhouse experiment was conducted to investigate the effects of a range of Cu concentrations (0 to 47 mmol l−1) on the growth, reproduction and photosynthetic performance of G. flavum, by measuring relative growth rate, fruit and seed production, chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined total copper, nitrogen, phosphorous, sulphur, calcium and magnesium concentrations. G. flavum survived with concentrations of up to 730 mg Cu kg−1 DW in the leaves, when treated with 30 mmol Cu l−1 (2000 mg l−1). Quantum efficiency of PSII, net photosynthesis rate, as well as leaf Ca and Mg concentrations were all negatively affected by Cu concentrations greater than 9 mmol l−1 in the nutrient solution. Our results indicate that the reduction in photosynthetic performance may be attributed to the adverse effect of excess Cu on the photosynthetic apparatus of the plant, both directly, via a decrease in pigment concentrations, and indirectly, via interference of Cu with Ca ions of PSII. Growth and seed production were only slightly affected by leaf tissue concentrations as high as 230 mg Cu kg−1 dry mass, which suggests that this species could play an important role in phytoremediation of Cu-contaminated soils.  相似文献   

13.
Microbial reduction of soluble uranyl [U (VI)] to insoluble uraninite by sulfate reducing bacteria (SRB) is a promising remediation strategy for uranium-contaminated groundwater. Effects of environmental factors, including pH and coexisting ions, on U (VI) bioreduction processes (UBP) remain unknown. Anaerobic batch experiments were performed to evaluate impact on UBP. Kinetic investigations with varied pH demonstrated that U (VI) was reduced mostly within 48 h. The bioprecipitation yields depended strongly on pH, increasing from 12.9% to 99.4% at pH 2.0 and 6.0, respectively. Sulfate concentration 4000 mg l−1 did not affect UBP; however, sulfate concentration 5000 mg l−1 significantly slowed UBP. Biogenic H2S produced during sulfate reduction was not directly involved in UBP. At 20 mg l−1 Zn or 10 mg l−1 Cu, no UBP inhibition was observed and uraninite was detected in metal sulfide precipitate. However, 25 mg l−1 Zn or 15 mg l−1 Cu stopped UBP completely. Cu toxicity mechanism probably differed from Zn. The ability to reduce U (VI) was lost permanently with exposure to 15 mg l−1 Cu, but not for Zn 25 mg l−1. No uraninite could be detected before nitrate removal, suggesting nitrate strongly inhibited UBP, which may possibly be related to denitrification intermediates controlling the solution redox potential.  相似文献   

14.
Biodegradation of two polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by a white rot fungus, Ganoderma lucidum, in broth cultures was investigated. It was found that the biomass of the organism decreased with the increase of PAH concentration in the cultures. In the cultures with 2 to 50 mg l−1 PAHs, the degradation rate constants (k1) increased with the PAH concentration, whereas, at the level of 100 mg l−1, the degradation rate constants decreased. In the presence of 20 mg l−1 PAHs, the highest degradation rates of both PAHs occurred in cultures with an initial pH of 4.0 at 30 °C. The addition of CuSO4, citric acid, gallic acid, tartaric acid, veratryl alcohol, guaiacol, 2,2′-azino-bis-(3- ethylbenzothazoline-6-sulfonate) (ABTS) enhanced the degradation of both PAHs and laccase activities; whereas the supplement of oxalate, di-n-butyl phthalate (DBP), and nonylphenol (NP) decreased the degradation of both PAHs and inhibited laccase production. In conclusion, G. lucidum is a promising white rot fungus to degrade PAHs such as phenanthrene and pyrene in the environment.  相似文献   

15.
Waste from the leather industry, known as limed leather fleshing (LF), has a low C:N (3.2) and an alkaline pH of 11.4. This is a major disadvantage for anaerobic digestion due to ammonia toxicity for methanogenesis. This study describes co-digestion of LF with biodegradable fraction of municipal solids waste optimised over a range of C:N and pH to minimise ammonia and to maximise biogas yield. The optimum conditions were found with a blend that provided C:N of 15 and pH of 6.5 and the cumulative biogas yield increased from 560 mL using LF fraction alone, to 6518 mL with optimum blend. At higher pH of 8.5, unionised ammonia was high (2473 mg L−1) coincided with poor biogas yield (47 mL d−1) that confirms ammonia toxicity. By contrast at a pH of 4.5 the ammonia was minimum (510 mg L−1), but high VFA (26,803 mg L−1) inhibited the methanogens. Biomass activity measured using ATP correlated well with biogas yield as reported previously.  相似文献   

16.
Xu X  Gao B  Yue Q  Zhong Q 《Bioresource technology》2011,102(9):5278-5282
A sorption process for the removal of phosphate was evaluated under various conditions using a filter bed packed with giant reed (GR) based adsorbent. FTIR spectrum measurement validated the existence of grafted amine groups in the adsorbent and Raman spectrum displayed the characteristic peaks of different forms of phosphate. The column sorption capacity of the adsorbent for phosphate was 54.67 mg g−1 in comparison with the raw GR of 0.863 mg g−1. Influent pH demonstrated an essential effect on the performance of the filter bed as compared to other influent conditions (flow rates and influent concentrations) and the optimal pH was selected at 5.0-10.0. Eluents of HCl, NaOH and NaCl solutions with concentrations of 0.01-0.1 mol l−1 showed the excellent capacities for desorption of phosphate from the adsorbent, and their elution processes could be finished in 90 min.  相似文献   

17.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

18.
Population density, nitrate turnover, and oxygen respiration of benthic foraminiferans were investigated in the oxygen minimum zone (OMZ) off the Chilean coast. Live foraminiferans were found predominantly in the upper 3 mm of the sediment, and the nitrate accumulating species Nonionella cf. stella and Stainforthia sp. dominated with a combined standing stock of 2.0 × 106 Rose Bengal stained specimens m− 2. The rate of denitrification in cells of N. cf. stella analyzed with nitrous oxide microsensors during acetylene inhibition was 84 ± 33 pmol C individual− 1 d− 1. Multiplied with the standing stock of N. cf. stella and Stainforthia sp. this yielded a minimum benthic denitrification rate of 173 µmol N m− 2 d− 1 by foraminiferans. Foraminiferal denitrification, which seemed to account for almost all benthic denitrification at the investigated site will be overlooked by most conventional methods measuring benthic denitrification. Compared to the denitrification rates, the potential rates of nitrate accumulation and oxygen respiration by N. cf. stella were an order of magnitude higher (864 pmol N individual− 1 d− 1 and 760 ± 87 pmol C individual− 1 d− 1, respectively), which seems an adaptation to the infrequent availability of nitrate and oxygen in the sediment surface.  相似文献   

19.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

20.
Microbial treatment of high-strength perchlorate wastewater   总被引:5,自引:0,他引:5  
To treat wastewater containing high concentrations of perchlorate, a perchlorate reducing-bacterial consortium was obtained by enrichment culture grown on high-strength perchlorate (1200 mg L−1) feed medium, and was characterized in a sequence batch reactor (SBR) over a long-time operation. The consortium removed perchlorate in the SBR with high reduction rates (35-90 mg L−1 h−1) and stable removal efficiency over 200-day operations. The maximum specific perchlorate reduction rate (qmax), half saturation constant (Ks), and optimal pH range were 0.67 mg-perchlorate mg-dry cell weight−1 h−1, 193.8 mg-perchlorate L−1, and pH 7-9, respectively. The perchlorate reduction yield was 0.48 mol-perchlorate mol-acetate−1. A clone library prepared using the amplicons of cld gene encoding chlorate dismutase showed that the dominant (per)chlorate reducing bacteria in the consortium were Dechlorosoma sp. (53%), Ideonella sp. (28%), and Dechloromonas sp. (19%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号