首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening for large gene rearrangements is established as an important part of molecular medicine but is also challenging. A variety of robust methods can detect whole-gene deletions, but will fail to detect more subtle rearrangements that may involve a single exon. In this paper, we describe a new, versatile and robust method to assess exon copy number, called multiplex PCR/liquid chromatography assay (MP/LC). Multiple exons are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC), and quantitated by fluorescent detection using a post-column intercalation dye. The relative peak intensities for each target directly reflect exon copy number. This novel technique was used to screen a panel of 121 unrelated retinoblastoma patients who were tested previously using a reference strategy. MP/LC correctly scored all deletions and demonstrated a previously undetected RB1 duplication, the first to be described. MP/LC appears to be an easy, versatile, and cost-effective method, which is particularly relevant to denaturing HPLC (DHPLC) users since it broadens the spectrum of available applications on a DHPLC system.  相似文献   

2.
Rubinstein-Taybi syndrome (RTS, MIM 180849) is a multiple malformation syndrome characterized by growth retardation, developmental delay, and dysmorphic features, including down-slanting palpebral fissures, a beaked nose, broad thumbs, and halluces. Mutations in the gene encoding the CREB-binding protein gene (CREBBP, also known as CBP) on chromosome 16p13.3 were identified in 1995. Recently, we developed a mutation analysis protocol using denaturing high-performance liquid chromatography (DHPLC) and identified heterozygous CREBBP mutations in 12 of 21 RTS patients. To test whether exonic deletions represent a common pathogenic mechanism, we assessed the copy number of all the coding exons using a recently developed method, the multiplex PCR/liquid chromatography assay (MP/LC). By using MP/LC, we performed screening for CREBBP exonic deletions among 25 RTS patients in whom no point mutations or small insertions/deletions were identified by DHPLC screening. We identified four classic RTS patients with deletions encompassing multiple exons (14-16, 5-31, 1-16, and 4-26). We conclude that large deletions including several exons are a relatively frequent cause of RTS, and that MP/LC is an effective method for detecting these deletions.  相似文献   

3.
In idiopathic or nonspecific mental retardation, the overall rate of cryptic subtelomeric rearrangements is estimated to be about 5%. Development of cost-effective screening for subtelomeric deletions would help clinical geneticists to make specific diagnoses in children with idiopathic mental retardation. Current screening modalities include fluorescence in situ hybridization (FISH) using subtelomeric probes and PCR-based quantitative analyses. Reductions in the cost and turnaround time will make the complete screening of subtelomeric rearrangements more widely used in clinical settings. Recently, a versatile method, called the multiplex PCR/liquid chromatography assay (MP/LC), was developed to assess copy numbers in this assay. Multiple genomic regions are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography. In the present study, we developed an MP/LC-based subtelomeric screening system that involves 21 multiple reactions and validated the protocol by analyzing 16 publicly available cell lines with known cytogenetic abnormalities involving at least one subtelomere per patient. To confirm the validity of the MP/LC method, we analyzed these cell lines concurrently with array-based comparative genomic hybridization (array-CGH), which gives higher resolution than the conventional G-banding technique. Among those 16 samples, the results from MP/LC and array-CGH agreed with each other perfectly. In 2 of the 16 samples, MP/LC correctly revealed subtelomeric duplications that were detected by array-CGH but were undetected by conventional cytogenetics, demonstrating the sensitivity of the MP/LC assay. This system is expected to be useful for making specific diagnoses and in genetic counseling for children with idiopathic mental retardation, a sizable fraction of whom have subtelomeric rearrangements.  相似文献   

4.
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.  相似文献   

5.
Mutations in the dystrophin gene result in both Duchenne and Becher muscular dystrophies (DMD and BMD). Approximately 65% of all mutations causing DMD are deletions (60%) or duplications (5%) of large segments of this gene, spanning one exon or more. Due to the large size of the dystrophin gene (79 exons), finding point mutations has been prohibitively expensive and laborious. Recent studies confirm the utility of pre-screening methods, as denaturing high-performance liquid chromatography (DHPLC) analysis in the identification of point mutations in the dystrophin gene, with an increment of mutation detection rate from 65% to more than 92%. Here we suggest an alternative and convenient method of DHPLC analysis in order to find mutations in a more rapid and less expensive way by introducing the analysis of 16 couples of dystrophin amplicons, in biplex exons DHPLC runs. Using this new protocol of biplex exons DHPLC screening, new mutations were identified in four male patients affected by DMD who had tested negative for large DNA rearrangements.  相似文献   

6.
The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.  相似文献   

7.
In European populations, large rearrangements contribute to approximately 2% of CF mutations. Here, we reported a novel duplication, the CFTRdup2, identified in a patient heterozygous for Phe508del and suffering from a mild CF. Using a combination of functional tests, we studied the impact of duplication/deletion on CFTR expression. We showed that the copy number variations of exon 2, in addition to abolishing the rate of the mature CFTR protein, affect the CFTR mRNA levels. These data illustrate the importance to perform functional analysis to better understand the molecular basis responsible for cystic fibrosis. Determining the impact of deletions or duplications is relevant for a more comprehensive diagnosis and prognosis of patients.  相似文献   

8.
Reunion Island is a French province, 800 km east of Madagascar and 200 km west of Mauritius. On Reunion Island, the birth prevalence of cystic fibrosis (CF) is particularly high in the population of European origin, approximately 1:1000. In a previous study, we demonstrated that the screening of the 27 exons of the CF transmembrane conductance regulator (CFTR) gene by denaturing high-pressure liquid chromatography (DHPLC) in 114 CF families allowed the detection of about 93% of the molecular defects present on Reunion Island. Unidentified CF mutations may lie in introns or in regulatory regions that are not routinely investigated, or may correspond to gene rearrangements such as large, heterozygous deletions that escape detection using current PCR-based techniques. Using a combination of different methods (such as multiplex ligation-dependent probe amplification), 6 of the 13 unidentified CF alleles (46%) were found to harbor a deletion of 5288 bp, spanning from exon 17a to 18. Identification and examination of the breakpoint sequences showed that this deletion is different from the 3120+1kbdel8.6Kb previously found in the Palestinian Arabs. The chromosomes bearing IVS16+3316_IVS18+644del5288 did not have a common extragenic haplotype. Clinical evaluation of homozygotes (2 unrelated patients) and compound heterozygotes indicated that this deletion represents a severe mutation associated with positive sweat chloride test, pancreatic insufficiency, and early age at diagnosis.  相似文献   

9.
Genetic testing of Duchenne and Becker muscular dystrophies (DMD/BMD) is a difficult task due to the occurrence of deletions or duplications within dystrophin (DMD) gene that requires dose sensitive tests. We developed three multiplex quantitative real-time PCR assays for dystrophin exon 5, 45, and 51 within two major hotspots of deletion/duplication. Each exon was co-amplified with a reference X-linked gene and the copy number of the target fragment was calculated by comparative threshold cycle method (delta deltaC(t)). We compared the performance of this method with previously described end-point PCR fluorescent analysis (EPFA) by studying 24 subjects carrying DMD deletions or duplications. We showed that Q-PCR is an accurate and sensitive technique for the identification of deletions and duplications in DMD/BMD. Q-PCR is a valuable tool for independent confirmation of EPFA screening, particularly when deletions/duplications of single exons occur or for rapid identification of known mutations in at risk carriers.  相似文献   

10.
Genomic rearrangements leading to deletion or duplication of gene(s) resulting in alterations in gene copy number underlie the molecular lesion in several genetic disorders. Methods currently used to determine gene copy number including real time PCR, southern hybridization, fluorescence in situ hybridization, densitometric scanning of PCR product etc. have certain disadvantages and are also expensive and time consuming. Herein, we describe a simple and rapid method to assess gene copy number using denaturing high performance liquid chromatography (dHPLC). We used X chromosome genes as model to compare the gene copy numbers present on this chromosome in males and females. DNA from these samples were amplified by biplex PCR using primer pairs specific for X chromosome genes only (target gene) and for genes present on both X and Y chromosomes (internal control). Amplified products were analyzed using HPLC under non-denaturing conditions. The ratio of peak areas (target gene/internal control) of the amplified products was approximately twice in female samples than male samples (p < 0.001) demonstrating that the differential gene copy number can be easily detected using this method. This method can potentially be used for diagnostic purpose where the need is to distinguish samples based on the differential gene copy numbers.  相似文献   

11.
Somatic mosaicism is a frequent phenomenon in Mendelian disorders that exhibit a high proportion of new mutations. However, mutant alleles present at low frequency may escape detection. We have previously shown that denaturing high-performance liquid chromatography (DHPLC) at the recommended melt temperature can detect TSC1 and TSC2 mutations in tuberous sclerosis patients with low-level somatic mosaicism, even when direct sequencing cannot identify the causative lesion. Here, we report the use of temperature modulation in DHPLC analysis to facilitate the robust detection of a mosaic mutation, N1643K, in the presence of a coexisting constitutional polymorphism.  相似文献   

12.
Denaturing high-performance liquid chromatography (DHPLC) has been used for rapid and accurate DNA mutation analysis; to extend the DNA fragment lengths analysis. Recently, polymorphism in polyglutamine-coding region of Amplified In Breast cancer gene 1 (AIB1) was analyzed as an independent genetic risk factor influencing breast cancer onset in carriers of mutation in breast cancer predisposing gene 1 (BRCA1). We have implemented efficient, cost-effective and rapid method for analysis of the AIB1 polyglutamine repeat polymorphism based on DHPLC analysis (WAVE system) of unlabeled PCR products. This strategy can be useful for genotyping of other trinucleotide repeat polymorphisms using DHPLC in medium/high throughput settings.  相似文献   

13.
Psoralen photoreaction produces covalent monoadducts and interstrand crosslinks in DNA. The interstrand DNA crosslinks are complex double strand lesions that require the involvement of multiple pathways for repair. Homologous recombination, which can carry out error-free repair, is a major pathway for crosslink repair; however, some recombination pathways can also produce DNA rearrangements. Psoralen photoreaction-induced recombination in yeast was measured using direct repeat substrates that can detect gene conversions, a form of conservative recombination, as well as deletions and triplications, which generate gene copy number changes. In repair-proficient cells the major products of recombination were gene conversions, along with substantial fractions of deletions. Deficiencies in DNA repair pathways increased non-conservative recombination products. Homologous recombination-deficient rad51, rad54, and rad57 strains had low levels of crosslink-induced recombination, and most products were deletions produced by single strand annealing. Nucleotide excision repair-deficient rad1 and rad2 yeast had increased levels of triplications, and rad1 cells had lower crosslink-induced recombination. Deficiencies in post-replication repair increased crosslink-induced recombination and gene copy number changes. Loss of REV3 function, in the error-prone branch, and of RAD5 and UBC13, in the error-free branch, produced moderate increases in deletions and triplications; rad18 cells, deficient in both post-replication repair sub-pathways, exhibited hyperrecombination, with primarily non-conservative products. Proper functioning of all the DNA repair pathways tested was required to maintain genomic stability and avoid gene copy number variation in response to interstrand crosslinks.  相似文献   

14.
《Cancer epidemiology》2014,38(4):382-385
Mutation in the BRCA1 gene increases the risk of the person developing breast and/or ovarian cancer. The prevalence and spectrum of large genomic rearrangements (LGRs) varies considerably among different tested populations. In our previous study we described three LGRs in BRCA1 (exons 13–19, exon 17 and exon 22) in Polish families at high risk of breast and ovarian cancer. In this study we analyzed a group of 550 unselected women with ovarian cancer for the three previously identified LGRs. We used a rapid, single-step and closed-tube method: high-resolution melting analysis (HRMA). In this group of unrelated patients diagnosed with ovarian cancer we found three cases with the same deletions of exon 22. This is the first recurrent large deletion in BRCA1 found in Poland. We conclude that screening for the exon 22 deletion in BRCA1 should be included in the Polish BRCA1 genetic testing panel and possibly extended into other Slavic populations.  相似文献   

15.
W Xiao  D Stern  M Jain  C G Huber  P J Oefner 《BioTechniques》2001,30(6):1332-1338
Denaturing high-performance liquid chromatography (DHPLC) is a sensitive, robust, and operationally inexpensive method for the detection of single-base substitutions and small deletions and insertions. To increase sample throughout, we have developed a multiplexing strategy using fluorophores to distinguish different PCR products. The system combines recent advances in the synthesis of monolithic poly(styrene-divinylbenzene) capillary columns with four-color confocal argon ion laser-induced fluorescence detection. Depending on the change in retention caused by the fluorophores, adjustments in the analysis temperature may be required to ensure the maximum mutation detection sensitivity.  相似文献   

16.
Because standard techniques used to detect mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene do not detect single or multiple exonic rearrangements, the importance of such rearrangements may be underestimated. Using an in-house developed, single-tube, semi-quantitative fluorescent PCR (SQF PCR) assay, we analyzed 36 DNA samples submitted for extensive CFTR sequencing and identified ten samples with rearrangements. Of 36 patients with classic CF, 10 (28%) harbored various deletions in the CFTR gene, accounting for 14% of CF chromosomes. A deletion encompassing the CFTR promoter and exons 1 and 2 was detected in a sample from one proband, and in the maternal DNA as well. In another family, a deletion of the promoter and exon 1 was detected in three siblings. In both of these cases, the families were African American and the 3120+1G>A splice site mutation was also identified. These promoter deletions have not been previously described. In a third case, a deletion of exons 17a, 17b, and 18 was identified in a Caucasian female and the same mutation was detected in the paternal DNA. In the other seven cases, we identified the following deletions: exons 2 and 3 (n=2); exons 4, 5, and 6a; exons 17a and 17b; exons 22 and 23; and exons 22, 23, and 24 (n=2). In our series, the frequency of CFTR rearrangements in classic CF patients, when only one mutation was identified by extensive DNA sequencing, was >60% (10/16). Screening for exon deletions and duplications in the CFTR gene would be beneficial in classic CF cases, especially when only one mutation is identified by standard methodologies. An erratum to this article can be found at  相似文献   

17.
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of “missing heritability” for human diseases.  相似文献   

18.
Mutations in the DPYD gene, which encodes dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in the catabolism of pyrimidines, are responsible for an inborn error of metabolism associated with thymine-uraciluria and neurological symptoms. Because the antimetabolite 5-fluorouracil (5-FU) is metabolized by the same enzyme, deficient DPYD alleles may also constitute a risk factor for severe toxicity following treatment with this anticancer drug. The aim of this study was to develop a comprehensive and rapid method to detect sequence variations within the DPYD gene. Using polymerase chain reaction (PCR) amplification and denaturing high-performance liquid chromatography (DHPLC), we established a protocol that makes it possible to screen all 23 exons of the DPYD gene and their exon-intron boundaries for both known and unknown mutations under identical conditions. A novel one-step PCR mutagenesis procedure was developed to generate heterozygous mutant amplicons as positive controls to optimize DHPLC detection of any sequence variation. DHPLC analysis was shown to result in mutation-specific elution profiles and to be able to distinguish different base changes within the same exon or different heterozygous combinations of mutations within the same exon. By analyzing the DPYD gene in 16 affected individuals, a total of 47 base changes were detected, representing eight known mutations and three novel intronic base changes. Sequence analysis confirmed all base changes detected. This method will be useful in identifying patients at risk for toxicity prior to 5-FU treatment, as well as in the analysis of individual patients with thymine-uraciluria.  相似文献   

19.
Mutations in the ABCA1 gene are the cause of familial high density lipoprotein deficiency (FHD). Because these mutations are spread over the entire gene, their detection requires the sequencing of all 50 exons. The aim of this study was to validate denaturing high-performance liquid chromatography (DHPLC) in mutation detection as an alternative to systematic sequencing. Exons of the ABCA1 gene were amplified using primers employed for sequencing. Temperatures for DHPLC were deducted from a software and empirically defined for each amplicon. To assess DHPLC reliability, we tested 30 sequence variants found in FHD patients and controls. Combined DHPLC and sequencing was applied to the genotyping of new FHD patients. Most of the amplicons required from two to five temperature conditions to obtain partially denatured DNA over the entire amplicon length. Twenty-nine of the variants found by sequencing were detected by DHPLC (97% sensitivity). The detection of the last variant (in exon 40) required different primers and amplification conditions. DHPLC and sequencing analysis of new FHD patients revealed that all amplicons showing a heteroduplex DHPLC profile contained sequence variants. No variants were detected in amplicons with a homoduplex profile. DHPLC is a sensitive and reliable method for the detection of ABCA1 gene mutations.  相似文献   

20.
In order to evaluate the sensitivity and specificity of the recently introduced high-throughput method DHPLC (denaturing high performance liquid chromatography) for mutation screening in the VHL tumor suppressor gene, we subjected DNA from 43 unrelated VHL patients with previously sequenced VHL germline mutations to this method. In addition, 36 genomic DNAs of unrelated individuals suspected of being VHL carriers but with unknown germline status were analyzed by DHPLC and sequencing. The aims of the present study were to compare mutation results obtained by direct sequencing and DHPLC, and a comparison of two different DHPLC systems. The sensitivity of DHPLC was tested with two commercial devices and protocols, i.e., the Varian-Helix system and the Wave Nucleic Acid Fragment Analysis system. Both resolved all but one mutation in exons 2 and 3 of the VHL gene. In contrast, the GC-rich exon 1 showed discrepancies in the rate of mutation detection. Whereas the Varian-Helix system detected 10/15 (67%) of the known mutations, the Wave Nucleic Acid Fragment Analysis system detected 13/14 (93%). All three mutations in samples with unknown mutation status were revealed by both systems raising the mutation detection rate to 72% and 94%, respectively. Cases with different substitutions at the same nucleotide showed different elution profiles, but similar elution profiles could be obtained from different mutations. The Wave Nucleic Acid Fragment Analysis system detected most VHL mutations; however, when a 100% detection rate is needed, sequencing is still required and must therefore be the standard VHL mutation detection procedure. Once a family-specific mutation has been established, DHPLC may be suitable for the rapid and cost-effective determination of VHL carrier status in family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号