首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Centromeric chromatin in most eukaryotes is composed of highly repetitive centromeric retrotransposons and satellite repeats that are highly variable even among closely related species. The evolutionary mechanisms that underlie the rapid evolution of centromeric repeats remain unknown. To obtain insight into the evolution of centromeric repeats following polyploidy, we studied a model diploid progenitor (Gossypium raimondii, D‐genome) of the allopolyploid (AD‐genome) cottons, G. hirsutum and G. barbadense. Sequence analysis of chromatin‐immunoprecipitated DNA showed that the G. raimondii centromeric repeats originated from retrotransposon‐related sequences. Comparative analysis showed that nine of the 10 analyzed centromeric repeats were absent from the centromeres in the A‐genome and related diploid species (B‐, F‐ and G‐genomes), indicating that they colonized the centromeres of D‐genome lineage after the divergence of the A‐ and D‐ ancestral species or that they were ancestrally retained prior to the origin of Gossypium. Notably, six of the nine repeats were present in both the A‐ and D‐subgenomes in tetraploid G. hirsutum, and increased in abundance in both subgenomes. This finding suggests that centromeric repeats may spread and proliferate between genomes subsequent to polyploidization. Two repeats, Gr334 and Gr359 occurred in both the centromeres and nucleolar organizer regions (NORs) in D‐ and AD‐genome species, yet localized to just the NORs in A‐, B‐, F‐, and G‐genome species. Contained within is a story of an established centromeric repeat that is eliminated and allopolyploidization provides an opportunity for reinvasion and reestablishment, which broadens our evolutionary understanding behind the cycles of centromeric repeat establishment and targeting.  相似文献   

2.
关于棉属四倍体种起源问题的过氧化物酶同工酶研究   总被引:1,自引:1,他引:0  
本文采用聚丙烯酰胺凝胶垂直板电泳和等电聚焦技术,对棉属(Gossypium)A基因组2个二倍体种、D基因组10个二倍体野生种和四倍体2(AD)基因组的3个种进行过氧化物酶同工酶酶谱分析。种间酶谱关系符合形态学,细胞学和遗传学的研究结果,但G.gossypioides,G.thurberi和G.trilobum的酶谱与D基因组其他种有较大差异却与A基因组相似。由二倍体种酶液组成的体外人工混合体与自然四倍体的比较分析表明,四倍体棉种G.darwinii,G.barbadense和G.hirsutum是A基因组和D基因组的异质组合,G.raimondii而不是G.thurberi或G.trilobum为四倍体种祖先基因组的最可能的D亚基因组供体。对过氧化物酶同工酶分析为棉属种间亲缘关系和四倍体起源的研究提供生化遗传依据的可行性进行了阐述。  相似文献   

3.
Populations of Escherichia coli B/r A were grown to log phase at various growth rates determined by the richness of the medium. The genome content, G, was calculated from log phase doubling times by means of the Cooper-Helmstetter formula. Cell volumes were measured and found to vary linearly with this genome content. Cells with various DNA contents were prepared for ultraviolet irradiation and plated for dark repair under similar conditions. The resulting logarithmic survival curves were all similar in shape: convex up, with straight line portions having approximately the same slope (D0 = 11.4 +/- 0.2 J/m2). The shoulders however increase in width with calculated DNA content giving an extrapolation number which varies roughly as exp(G) or exp (0.6 Gmax).  相似文献   

4.
To explore types, levels and patterns of genetic divergence among diploid Gossypium (cotton) genomes, 780 cDNA, genomic DNA and simple sequence repeat (SSR) loci were re-sequenced in Gossypium herbaceum (A1 genome), G. arboreum (A2), G. raimondii (D5), G. trilobum (D8), G. sturtianum (C1) and an outgroup, Gossypioides kirkii. Divergence among these genomes ranged from 7.32 polymorphic base pairs per 100 between G. kirkii and G. herbaceum (A1) to only 1.44 between G. herbaceum (A1) and G. arboreum (A2). SSR loci are least conserved with 12.71 polymorphic base pairs and 3.77 polymorphic sites per 100 base pairs, whereas expressed sequence tags are most conserved with 3.96 polymorphic base pairs and 2.06 sites. SSR loci also exhibit the highest percentage of 'extended polymorphisms' (spanning multiple consecutive nucleotides). The A genome lineage was particularly rapidly evolving, with the D genome also showing accelerated evolution relative to the C genome. Unexpected asymmetry in mutation rates was found, with much more transition than transversion mutation in the D genome after its divergence from a common ancestor shared with the A genome. This large quantity of orthologous DNA sequence strongly supports a phylogeny in which A-C divergence is more recent than A-D divergence, a subject that is of much importance in view of A-D polyploid formation being key to the evolution of the most productive and finest-quality cottons. Loci that are monomorphic within A or D genome types, but polymorphic between genome types, may be of practical importance for identifying locus-specific DNA markers in tetraploid cottons including leading cultivars.  相似文献   

5.
The enormous species diversity of diatoms correlates with the remarkable range of cell sizes in this group. Nuclear DNA content relates fundamentally to cell volume in other eukaryotic cells. The relationship of cell volume to G1 DNA content was determined among selected members of the genus Thalassiosira, one of the most species‐rich and well‐studied centric diatom genera. Both minimum and maximum species‐specific cell volume correlated positively with G1 DNA content. Phylogeny based on 5.8 S and ITS rDNA sequences indicated that multiple changes in G1 DNA content and cell volume occurred in Thalassiosira evolution, leading to a 1,000‐fold range in both parameters in the group. Within the Thalassiosira weissflogii (Grunow) G. A. Fryxell et Grunow species complex, G1 DNA content varied 3‐fold: differences related to geographic origin and time since isolation; doubling and tripling of G1 DNA content occurred since isolation in certain T. weissflogii isolates; and subcultures of T. weissflogii CCMP 1336 diverged in DNA content by 50% within 7 years of separation. Actin, β‐tubulin, and Spo11/TopVIA genes were selected for quantitative PCR estimation of haploid genome size in subclones of selected T. weissflogii isolates because they occur only once in the T. pseudonana Hasle et Heimdal genome. Comparison of haploid genome size estimates with G1 DNA content suggested that the most recent T. weissflogii isolate was diploid, whereas other T. weissflogii isolates appeared to be polyploid and/or aneuploid. Aberrant meiotic and mitotic cell divisions were observed, which might relate to polyploidization. The structural flexibility of diatom genomes has important implications for their evolutionary diversification and stability during laboratory maintenance.  相似文献   

6.
Gossypium mustelinum ((AD)4) is one of five disomic species in Gossypium. Three 45S ribosomal DNA (rDNA) loci were detected in (AD)4 with 45S rDNA as probe, and three pairs of brighter signals were detected with genomic DNA (gDNA) of Gossypium D genome species as probes. The size and the location of these brighter signals were the same as those detected with 45S rDNA as probe, and were named GISH-NOR. One of them was super-major, which accounted for the fact that about one-half of its chromosome at metaphase was located at chromosome 3, and other two were minor and located at chromosomes 5 and 9, respectively. All GISH-NORs were located in A sub-genome chromosomes, separate from the other four allopolyploid cotton species. GISH-NOR were detected with D genome species as probe, but not A. The greatly abnormal sizes and sites of (AD)4 NORs or GISH-NORs indicate a possible mechanism for 45S rDNA diversification following (AD)4 speciation. Comparisons of GISH intensities and GISH-NOR production with gDNA probes between A and D genomes show that the better relationship of (AD)4 is with A genome. The shortest two chromosomes of A sub-genome of G. mustelinum were shorter than the longest chromosome of D sub-genome chromosomes. Therefore, the longest 13 chromosomes of tetraploid cotton being classified as A sub-genome, while the shorter 13 chromosomes being classified as D sub-genome in traditional cytogenetic and karyotype analyses may not be entirely correct.  相似文献   

7.
I show that the recognition sequences of Type II restriction systems are correlated with the G + C content of the host bacterial DNA. Almost all restriction systems with G + C rich tetranucleotide recognition sequences are found in species with A + T rich genomes, whereas G + C rich hexanucleotide and octanucleotide recognition sequences are found almost exclusively in species with G + C rich genomes. Most hexanucleotide recognition sequences found in species with A + T rich genomes are A + T rich. This distribution eliminates a substantial proportion of the potential variance in the frequency of restriction recognition sequences in the host genomes. As a consequence, almost all restriction recognition sequences, including those eight base pairs in length (Not I and Sfi I), are predicted to occur with a frequency ranging from once every 300 to once every 5,000 base pairs in the host genome. Since the G + C content of bacteriophage DNA and of the host genome are also correlated, the data presented is evidence that most Type II "restriction systems" are indeed involved in phage restriction.  相似文献   

8.
Nuclei were isolated from cotyledons of a range of accessionsfrom 14 species of Glycine. These were stained with ethidiumbromide and the relative fluorescence for each genotype wasmeasured by flow cytometry. The DNA content was estimated bycomparison of relative fluorescence with that from nuclei fromseedling leaves of Allium cepa, whose DNA content has been calculatedpreviously by chemical assay. The 4C amounts for diploid Glycineranged from 3.80 to 6.59 pg. Two groups of diploid species appearedfrom the analysis. The first consisted of species with amountsranging from 3.80 to 5.16 pg and included G. canescens (AA),G. argyrea (A1 A1), G. clandestina (A2A2), G. microphylla(BB),G. latifolia (B1B1), G. tabacina 2n=40 (B2B2), G. tomentella2n=38 (EE) and 2n=40 (DD), G. max and G. soja (GG), G. arenariaand G. latrobeana. A second group had higher DNA contents rangingfrom 5.27 to 6.59 pg, and consisted of G. curvata, G. cyrtoloba(CC), and G. falcata (FF). The polyploid species, G. tabacina2n=80 (AABB, BBB1B1), G. tomentella 2n=78 and 2n=80 (AAEE andDDEE, respectively) contained amounts approximating to the sumsof the respective parental diploid species thought to have givenrise to these allotetraploids. Intraspecific variation was detectedin the DNA content of G. canescens. Within the overall distributionof DNA amounts found in A genome species, each genome containeda range of DNA contents specific to that species. This phenomenonwas also detected amongst B genome species.  相似文献   

9.
孙高飞  何守朴  潘兆娥  杜雄明 《遗传》2015,37(2):192-203
SSRs(Simple sequence repeats)是一类广泛存在于动植物基因组的DNA短串联重复序列,是重要的基因组分子标记。比较不同基因组同源SSR的差异,有利于了解相近物种间的进化过程。文章使用雷蒙德氏棉基因组(D5)、亚洲棉基因组(A2)全基因组序列和陆地棉(AD1)的限制性酶切基因组测序数据,进行全基因组SSR扫描,比较了A组和D组的SSR分布情况,通过识别3个基因组之间的同源SSR,比较它们之间同源SSR重复序列的差异。结果发现,A组和D组同源SSR的分布规律非常相似,但A组与AD组的同源SSR保守性比D组与AD组同源SSR的保守性强。与AD组同源SSR相比,A组中重复序列长度增长的SSR数量约为长度缩短的SSR数量的5倍,在D组中这一比值约为3倍。可以推测,四倍体AD组在与A组、D组的平行进化过程中,由于基因组融合,导致SSR的重复序列长度变化速率与二倍体A、D组有差异,同时这种差异可能导致了AD组SSR重复序列长度在进化过程中与二倍体相比有变短的趋势。文章首次对3个棉花基因组的同源SSR进行了系统地比较,发现了同源SSR在棉属四倍体基因组和二倍体基因组中的显著差异,为进一步揭示棉属基因组的进化规律提供了基础。  相似文献   

10.
Relationships between 9Oryza species, covering 6 different genomes, have been studied using hybridization and nucleotide sequence information from the5S Dna locus. Four to five units of the major size class of 5S DNA in each species, 55 units in all, were cloned and sequenced. Both hybridization and sequence data confirmed the basic differences between the A and B, C, D genome species suggested by morphological and cytological data. The 5S DNA units of the A genome species were very similar, as were the ones from the B, C, and D genome-containing species. The 5S DNA ofO. australiensis (E genome) grouped with the B, C, D cluster, while the units ofO. brachyantha (F genome) were quite different and grouped away from all other species. 5S DNA units fromO. minuta, O. latifolia, O. australiensis, andO. brachyantha hybridized strongly, and preferentially, to the genomic DNA from which the units were isolated and hence could be useful as species/genome specific probes. The 5S DNA units fromO. sativa, O. nivara, andO. rufipogon provided A genome-specific probes as they hybridized preferentially to A genome DNA. The units fromO. punctata andO. officinalis displayed weaker preferential hybridization toO. punctata DNA, possibly reflecting their shared genome (C genome).  相似文献   

11.
BACKGROUND: Although there is a lot information in the literature about genome size in fish, a high variability among data for the same species is reported, being mainly related to methodological aspects. Flow cytometry-based fluorescence measurements of intercalating dyes is the most attractive approach due to its precision, objectivity, high speed, and relative simplicity. METHODS: We analyze the DNA content of G0/G1 diploid nuclei of three teleost species (Carassius auratus, Tinca tinca, and Danio rerio) using flow cytometry. Forty-three animals were used and up to 50,000 retinal cells were analyzed per sample. Propidium iodide-associated fluorescence was assessed using a FACSCalibur flow cytometer. Standard human leukocytes were used as a reference. RESULTS: Our results show that C. auratus (3.584 +/- 0.058 pg per nucleus) and D. rerio (3.357 +/- 0.074 pg per nucleus) showed similar DNA contents per cell, whereas it was significantly lower (2.398 +/- 0.038 pg per nucleus) in T. tinca. Interestingly, a low intraspecies variability was observed, the coefficient of variation being 1.608%, 2.198%, and 1.573% for C. auratus, D. rerio, and T. tinca, respectively. CONCLUSIONS: The methodology used in this study provides an accurate and easy measurement of the genome size of a species.  相似文献   

12.
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.  相似文献   

13.
Three repeated sequence clones, pAS1(1.0 Kb), pAS2(1.8 Kb) and pAS12(2.5 Kb), were isolated fromAegilops squarrosa (Triticum tauschii). The inserts of the three clones did not hybridize to each other. Two of the clones, pAS2 and pAS12, contain repeated sequences which were distributed throughout the genome. The clone pAS1 sequence was more restricted and was located in specific areas on telomeres and certain interstitial sites along the chromosome length. This cloned sequence was also found to be restricted to the D genome at the level ofin situ hybridization. The pAS1 sequence will be useful in chromosomal identification and phylogenetic analysis. All three clones will allow assessment of genome plasticity inAegilops squarrosa. Nuclear DNA content varies over a range of 10,000 fold among all organisms (Nagl et al., 1983). Among angiosperms, at least a 65-fold range in genome size occurs in diploid species (Sparrow, Price and Underbrink, 1972; Bennett, Smith and Heslop-Harrison, 1982). This DNA variation has been reported within families, genera, and species (Rothfels et al., 1966; Rees and Jones, 1967; Miksche, 1968; Price, Chambers and Bachmann, 1981). Much of the interspecific variation in genome size among angiosperms appears to be due to amplification and/or deletion of DNA within chromosomes. The variation in genome size does not appear to result in changes in the number of coding genes (Nagl et al., 1983). While the number of coding genes, with the exception of rDNA in specific examples, appears to remain constant, the remaining non-coding regions are quite flexible. This non-coding DNA encompasses over 99% of the plant genome and consists of sequences that exist as multiple copies throughout the genome and are identified as repeated DNA sequences (Flavell et al., 1974). Flavell et al. (1974) have reported that increasing genome size in higher plants is associated with increasing repetitive DNA amounts. Subsequent reports have substantiated this correlation (Bachmann and Price, 1977; Narayan, 1982). In various cereals, heterochromatin, which has been demonstrated to be correlated with the location of specific repeated DNA sequences, has been positively correlated with genome size (Bennett, Gustafson and Smith, 1977; Rayburn et al., 1985). Furuta, Nishikawa and Makino (1975) found significant DNA content variation among different accessions ofAegilops squarrosa L. This species contains the D genome, a pivotal genome in several polyploid species and also found in hexaploid wheat (AABBDD). The importance of this genome to the study of bread wheat genomes makes the mechanism(s) of this genomic plasticity of particular interest. In order to determine which sequences are varying, one must first have a way to identify specific types of chromatin and/or DNA. Specific types of chromosome banding such as C- and N-banding have been used to identity types of chromatin in previous studies. C-banding of the D genome results in very lightly staining bands whose pattern is somewhat indistinct. N-banding alternatively has been shown to be useful in identifying certain chromosomes of hexaploid wheat but is limited by the lack of major bands in the D genome (Endo and Gill, 1984). Specific DNA sequences have been isolated fromTriticum aestivum cultivar “Chinese Spring” (hexaploid wheat). However, these sequences are representatives of the A and/or B genomes of hexaploid wheat and are not found in significant quantities in the D genome (Hutchinson and Lonsdale, 1982). Various other repeated DNA sequences have been successfully isolated from rye (Bedbrook et al., 1980) and identified on rye chromosomes (Appels et al., 1981; Jones and Flavell, 1982). Certain of these sequences are found in wheat genomes, but the sequences are representative of only a minor fraction of the D genome (Bedbrook et al., 1980; Rayburn and Gill, 1985). The purpose of this report is to describe three distinct repeated DNA sequences isolated fromA. squarrosa (D genome). Two clones appear to be distributed throughout the total genome, and the third clone is restricted to specific sites along the chromosomes. This latter clone will prove useful in cytologically defining the D genome chromosomes. These sequences appear representative of two types of repeated DNA genome organization: 1) sequences distributed throughout the genome and 2) specific arrays of repeated sequences. The availability of such repeated DNA sequence clones along with the known intraspecific DNA content variation inA. squarrosa will allow the study of genomic plasticity of this species.  相似文献   

14.
Summary Alloplasmic male sterile (cms) and restoration-of-fertility (Rf) lines of the AD allotetraploid Gossypium hirsutum were earlier derived from the presumed introgression of the cytoplasm of the D species G. harknessii. To confirm that this happened and address its significance, cytoplasms of the maternal progenitor, backcross intermediates, derived breeding lines, related A, D, and F species, and a synthetic AD tetraploid were examined by agarose and polyacrylamide gel electrophoresis of 140 restriction enzyme fragments of chloroplast DNA. Length mutations of 10–50 nucleotides predominate over site loss/gain mutations. Chloroplast DNA is maternally inherited and that of G. harknessii has been maintained in the cms lines for at least 13 successive generations without detectable alteration. Chloroplast DNA divergence is consistent with current nuclear genome classification and shows that the A progenitor was the maternal parent of the AD tetraploids. As predicted from incompatability models of cms, the degree of male sterility in alloplasmic Gossypium tetraploids is correlated with the extent of evolutionary divergence of their cytoplasms. It is suggested that the A genome in the AD tetraploids dominates those nuclear-cytoplasm interactions reflected by male fertility.  相似文献   

15.
利用SSR标记技术研究棉属A、D染色体组的进化   总被引:14,自引:0,他引:14  
郭旺珍  王凯  张天真 《遗传学报》2003,30(2):183-188
利用SSR分子标记技术,对棉属A、D染色体二倍体及四倍体代表棉种进行了遗传多样性分析。供试的10个二倍体代表棉种间遗传多态性丰富,分子聚类结果与Fryxell棉属分类结果相同。分子水平上进一步揭示出属于D染色体组的拟似棉与其他D染色体组棉种的相似系数最低,A,D染色体组间相似系数很高,该结果支持拟全民族似棉是D染色体组最原始棉种,棉属不同染色体组是共同起源,单元进化的理论,利用栽培的异源四倍体棉种不太适于研究棉属A、D染色体组的进化。  相似文献   

16.
Cytological comparisons were made of triploid and 3x – 1 plants of Gossypium hirsutum (haplo 17 and 18) X G. aridum, G. armourianum, G. harknessii, and G. raimondii. Tests and observations led to these conclusions: (1) Chromosome conjugation varied significantly from plant to plant and date to date within plants. (2) The D genome chromosomes of G. hirsutum are closer in homology to G. raimondii than to the other species tested. (3) The chromosomes of G. aridum, have closer homology to the A genome of G. hirsutum than do the chromosomes of the other D species tested. (4) The D genome of G. hirsutum has a small translocation as compared to the genomes of the four D species studied.  相似文献   

17.
Large variation in genome size as determined by the nuclear DNA content and the mitotic chromosome size among diploid rice species is revealed using flow cytometry and image analyses. Both the total chromosomal length (r_0.939) and the total chromosomal area (r_0.927) correlated well with the nuclear DNA content. Among all the species examined, Oryza australiensis (E genome) and O. brachyantha (F genome), respectively, were the largest and smallest in genome size. O. sativa (A genome) involving all the cultivated species showed the intermediate genome size between them. The distribution patterns of genome-specific repetitive DNA sequences were physically determined using fluorescence in situ hybridization (FISH). O. brachyantha had limited sites of the repetitive DNA sequences specific to the F genome. O. australiensis showed overall amplification of genome-specific DNA sequences throughout the chromosomes. The amplification of the repetitive DNA sequences causes the variation in the chromosome morphology and thus the genome size among diploid species in the genus Oryza.  相似文献   

18.
The ascending genome size in Gossypium is assumed to be D, A, B, E and F, and C. Feulgen cytophotometry revealed that mean value of DNA content for each genome was D= 10.95, B = 13.88, F = 14.31, E = 18.24, A = 18.66, and C = 20.30, and that there is a close relationship of genomic chromosome size and DNA content. Evidence suggests that the five genomes with large chromosomes arose from a D genome-like progenetor by large scale, saltatory replication of repetitive DNA distributed uniformly through the ancestral genome. Corresponding adjustment in recombination units did not accompany the two-fold divergence in DNA value of the two homoeologous A and D genomes in the allotetraploid species.  相似文献   

19.
Polyploidization is a key component of plant evolution. The number of independent origins of polyploid species traditionally has been underestimated. The objective of this study was to ascertain the number of origins of a tetraploid Aegilops species. We screened 84 primer sets to identify genome-specific primer sets for the tetraploid wheat relative [Aegilops triuncialis (UUCC genome)] and its diploid progenitors [Ae. umbellulata (UU genome) and Ae. caudata (CC genome)]. Primer sets G12 and G43 were U genome-specific and D21 was a C genome-specific primer. DNA sequence comparison of the G43 locus was used to estimate the number of polyploidization events in the formation of Ae. triuncialis. Parsimony analysis of G43 data revealed at least two independent formations of Ae. triuncialis. In the chloroplast hotspot region, located between genes rbcL and petA, sequence analysis suggested that at least three polyploidization origins might have occurred independently. Ae. triuncialis appears to be a tetraploid derived from multiple origins with minimal genome change after its formation.  相似文献   

20.
R. Garesse 《Genetics》1988,118(4):649-663
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G + C on both strands. The predominant type of transition is strand specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号