首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
生物体内合成的内源性气体分子:NO,CO以及H_2S,具有多种生物学功能因而被称为气体信号分子。这三种气体信号分子在许多生理与病理过程中发挥重要作用,如调节血管紧张性、炎症反应、生殖功能等。本文主要对这三种气体信号分子在女性和雌性动物生殖系统中的分布和生物学功能进行综述。  相似文献   

2.
活性氧(reactive oxygen species,ROS)是生物体有氧代谢产生的一类活性含氧化合物的总称,主要包括O2·-、H2O2、·OH等,机体细胞通过多种途径维持ROS产生与消解的动态平衡。近年的研究揭示ROS参与细胞正常的生理过程,与细胞的增殖、分化及凋亡密切相关。不同刺激诱导细胞产生的内源性ROS可作为第二信使,通过改变氧化还原状态调节增殖、分化和凋亡相关的信号转导通路中多种靶分子的活性,最终决定细胞的命运。  相似文献   

3.
硫化氢是继一氧化氮和一氧化碳之后的第三种内源性气体信号分子。近年来,内源性硫化氢的产生及生理意义已经被认识,其代谢异常与多种疾病有关。本文综述了近年报道的硫化氢及其内生酶在糖尿病发病及进展中的变化情况,并重点概述硫化氢效应的细胞机制,包括硫化氢对β细胞胰岛素释放和对脂肪细胞葡萄糖摄取的影响。深入理解硫化氢在糖尿病中的作用将为以硫化氢为靶点的糖尿病治疗和抗糖尿病新药设计提供新的思路。  相似文献   

4.
Liu XQ  Yan Y 《生理科学进展》2007,38(2):177-180
神经系统内源性的硫化氢(H2S)被认为是一种神经调质,其可以提高神经元N-甲基-D-天冬氨酸(NMDA)受体调节的反应,易化海马长时程增强(LTP)的产生,从而调节学习和记忆;诱发星形细胞产生钙波从而介导神经元及星形胶质细胞间的信号传递;增加抗氧化剂谷胱甘肽水平、抑制和清除神经系统内的多种氧化性物质等,具有广泛的生理作用。同时,H2S也参与了Alzheimer病、热性惊厥、脑卒中、Down's综合征等神经系统疾病的病理生理过程。  相似文献   

5.
一氧化氮在植物体内的信号分子作用   总被引:16,自引:0,他引:16  
一氧化氮 (nitricoxide ,NO)是一种广泛分布于生物体的气体活性分子 ,它具有多种生理功能。动物体研究结果揭示 ,NO在血管松驰、神经转导及先天性免疫反应等一系列生理代谢过程均可作为一种关键的信号和效应分子。有关NO作为信使物质参与植物抗病及其他生理代谢调节的报道也日益增多。1 .植物内源NO的产生途径植物体内氮代谢的关键酶硝酸还原酶(nitratereductase,NR)也可以NADH/NADPH作为电子供体 ,催化硝酸盐和亚硝酸盐的单电子还原反应来合成NO。如在含有NO-2 和NADH的缓冲液 (p…  相似文献   

6.
硫化氢是新的气体信号分子,在多种疾病中有重要的保护作用。脂肪组织表达胱硫醚β合酶、胱硫醚γ裂解酶以及β-巯基丙酮酸转硫酶并产生释放硫化氢。脂肪组织内源性硫化氢可调节脂肪糖摄取和利用、脂肪分解、脂肪细胞分化以及脂肪内分泌,从而参与肥胖、糖尿病以及心血管疾病的调节。硫化氢可激活胰岛素受体信号、激活过氧化物增殖体活化受体γ、调控钾离子通道参与调节过程。硫化氢可能作为能量代谢的"开关",参与代谢性疾病的调节。  相似文献   

7.
硫化氢(H2S)被认为是一种无色具有臭鸡蛋气味的有毒气体,大量吸入可导致多种组织器官的损害,严重者可导致死亡。但近年来的研究表明,H2S在心血管系统具有多种生理和病理调节作用,是心血管功能调节的第三种气体信号分子,主要由酶促反应生成,受多种代谢途径调节。作为一种生理性血管调节因子,H2S具有抑制血管细胞增殖、凋亡和自噬,并调控血管张力的作用。H2S通路的下调参与了多种血管疾病的发病,如高血压、肺动脉高压、动脉粥样硬化等,并且可以通过补充H2S来调节血管张力,抑制血管炎症,防止血管细胞钙化、氧化应激和增殖以及调节血管细胞凋亡及焦亡,进而极大地帮助防治血管疾病,这一结论已在动物和细胞实验,甚至临床研究中得到验证。本文主要论述H2S在血管生理和病理生理中的作用及作用机制的研究现状,旨在为多种血管疾病的防治提供新的思路和启发。  相似文献   

8.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

9.
硫化氢(hydrogen sulfide, H2S)作为一种重要的内源性气体信号分子或气体递质,在调节中枢神经系统内环境稳态和细胞信号传导方面发挥着重要的生理作用,被认为是新兴的神经保护剂和神经调节剂. 20余年来,越来越多的科学家投入到H2S神经保护和神经调节作用的研究中,力图更深入地认识H2S对中枢神经系统的生物学效应及其机制,以H2S为匙,从而更好地打开中枢神经系统重大疾病的治疗迷局.本文从内源性H2S的产生与代谢过程、生物学效应和H2S在中枢神经系统疾病中的作用及其机制等方面进行回顾,重点阐述了H2S在神经退行性疾病等中枢神经系统重大疾病中的保护作用及其分子靶点,同时介绍了本课题组所做的相关工作,以期为H2S和中枢神经系统重大疾病领域的研究者提供参考.  相似文献   

10.
硫化氢与细胞的增殖和凋亡   总被引:1,自引:1,他引:1  
Yang GD  Wang R 《生理学报》2007,59(2):133-140
硫化氢是内源性气体分子家族中的一员,是一种气体递质(gasotransmitter)。近年来,内源性硫化氢的产生及生理意义已经被认识,其代谢异常与许多疾病有关。本文综述了最近发现的硫化氢对细胞增殖和凋亡的调节作用,并重点概述硫化氢细胞效应的分子机制,包括丝裂原活化蛋白激酶、细胞周期相关激酶、细胞死亡相关基因以及离子通道等的改变。对硫化氢调节细胞生长或死亡的深入了解将为新药设计及许多疾病的治疗提供新的思路。  相似文献   

11.
一氧化氮是一个有较高活性的自由基气体分子,无论在动植物还是微生物中,作为一个细胞内和细胞间的信号传导分子,它在许多的生理和病理过程中都发挥着双向的调节作用.研究发现真菌细胞可以合成一氧化氮,适当浓度的一氧化氮在真菌细胞内发挥多种重要的生物学功能,一旦一氧化氮过量累积,这个自由基分子会对细胞造成伤害,导致细胞凋亡.一氧化氮介导生成的环鸟苷酸(cGMP)作为一种重要的第二信使分子涉及到真菌细胞内多种信号途径的调控,调节了整个真菌类群的生长发育、形态发生、孢子形成和萌发、繁殖和细胞凋亡的过程,影响了真菌整个生命周期的生理活动.到目前为止,尽管一氧化氮在动植物中作用的机制得到了广泛的研究,但一氧化氮在真菌中的研究报道很有限.关于一氧化氮在真菌中的合成和降解途径,一氧化氮介导的信号传导机制的研究还不透彻,它在真菌细胞内的功能和毒理还有待于更深入的研究.  相似文献   

12.
脑是人体对缺氧最敏感的器官,脑缺氧后会导致局部脑组织受损,当缺血脑组织恢复血流供应后,其损伤反而加重,即脑缺血再灌注损伤。硫化氢(hydrogen sulfide, H2S)是一种气体信号分子,同时也是新型的内源性神经调节物。不同浓度的H2S对神经元的作用有所不同。低浓度的H2S可通过抗氧化应激损伤、抑制炎症反应、抑制细胞凋亡、减轻脑血管内皮细胞损伤、调节细胞自噬等多种途径,在脑缺血再灌注损伤中发挥重要的保护作用,为临床诊治相关疾病提供了新思路。本文就脑缺血再灌注损伤时H2S对损伤脑组织保护作用的最新研究进展作一综述。  相似文献   

13.
植物体内重要的信号分子--H2O2   总被引:3,自引:3,他引:0  
越来越多的证据表明,植物体内的H2O2作为信号分子发挥作用.在病原、诱发因子和激素应答中是调节细胞程序性死亡的关键因子.H2O2在环境胁迫防御反应中的信号作用也得到证实.已知H2O2直接调节无数基因的表达,其中有些基因与植物防御和超敏反应有关.H2O2还与其它信号系统特别是激素信号相互作用,是激素介导的信号传导通路上的上游或下游组分;更重要的是H2O2还影响和修饰其它第二信使如钙信号的作用,在H2O2信号和钙信号之间发生众多的交互作用且这两种信号分子都调节植物对多种胁迫的交互耐性.此外,现已广泛地认识到与H2O2相关的氧还状态调节是调整细胞活动的关键因子.本文主要概括和讨论了H2O2在不同生物过程中的信号作用.  相似文献   

14.
硫化氢(hydrogen sulfide,H2S)是继一氧化氮(nitric oxide,NO)和一氧化碳(carbon monoxide,CO)之后发现的第3种气体信号分子,它能参与生物体内的多种生理生化过程并发挥特定功能。在动物体内,H2S能够调节血管及神经系统功能。植物也能通过产生内源H2S来提高对环境的适应能力,缓解多种逆境胁迫造成的损伤和毒害,参与特定的生理代谢过程,诸如参与气孔运动和延缓衰老等。本文从H2S产生和代谢途径、已发现的生理功能和信号转导机制等方面综述H2S在植物中的最新研究进展,同时也探讨了H2S与其它信号分子的相互作用以及H2S对蛋白质的修饰机制。  相似文献   

15.
植物线粒体、活性氧与信号转导   总被引:9,自引:6,他引:9  
活性氧(ROS)的产生是需氧代谢不可避免的结果。在植物细胞中,线粒体电子传递链(ETC)的复合物Ⅰ和Ⅱ是ROS产生的主要的部位。交替氧化酶和可能的内源鱼藤酮不敏感的NADH脱氢酶通过保持ETc的相对氧化状态限制线粒体产生ROS。线粒体基质中的抗氧化酶系统与小分子量的抗氧化剂一道起ROS的解毒作用。ROS除了引起细胞的伤害外,在植物中还能够作为一种普遍存在的信号分子起作用。在低浓度时,ROS能诱导防御基因的表达和引起适应反应;在高浓度时,引起细胞死亡。一氧化氮是植物合成和释放的一种气体,也可作为信号分子调节植物的生长和发育。  相似文献   

16.
腺垂体促肾上腺皮质激素的分泌主要受下丘脑和靶腺激素的调节,近年来发现,不同的ACTH分泌细胞通过产生局部因子,促进或抑制ACTH的分泌。这种旁分泌调节方式,在生理或紧张状态下都起着重要作用。  相似文献   

17.
内源性H2S --一种新的气体信号分子   总被引:37,自引:2,他引:35  
20世纪90年代中期,发现半胱氨酸代谢生成气体分子硫化氢(H2S),对神经系统特别是海马的功能具有调节作用,并可以调节消化道和血管平滑肌的张力,而其作用特点有别于另外两种气体信号分子NO及CO,但H2S的信号转导途径一直未能阐明,直到最近研究证实,内源性H2S直接作用于KATP通道实现对血管的调节作用;而且可以刺激神经细胞cAMP水平增加,提高NMDA受体介导的突触后兴奋性电位,提高诱导海马长时程增强。越来越多的证明表明,内源性H2S是一种新的气体信号分子,对其研究是当前生物学领域的崭新课题,具有重要的理论和临床意义。  相似文献   

18.
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是整合细胞内外各种信号,调节蛋白质翻译与细胞生长增殖等多种生理活动的中心信号分子。活性氧类(reactive oxygen species,ROS)作为第二信使分子,可介导多种细胞信号通路并发挥广泛的生理效应。近年的研究发现ROS可通过一定的途径激活或抑制mTOR通路。而作为反馈调节,mTOR通路活性的轻度上调可促进细胞抗氧化物质的生成,而过度激活则会促进ROS生成,并增加细胞对氧化应激的敏感性,形成正反馈。本文将ROS与mTOR之间相互调节与相互作用的特点及机制的研究进展作一综述。  相似文献   

19.
新近发现的p53家族成员-p53基因,其结构和功能均与p53有相似之处。p53蛋白可与多种病毒,胞内信号分子,p53蛋白及其他调节蛋白作用,参与粒细胞分化及T细胞凋亡等多种生理过程;还不清楚p53介否作为一种抑癌基因。  相似文献   

20.
一氧化氮(NO)作为一种具有生物活性的气体自由基分子,它的功能代表了生物学系统中信号传递的新途径。大量证据表明,NO在浮游植物细胞中的功能和在高等动植物中类似,具有调节生长和参与抗逆性的作用,NO和ROS可能作为信号分子参与介导浮游植物程序性死亡(PCD)过程。文章较全面地介绍了NO在浮游植物中的产生途径、测定方法、生理功能和PCD的关系及作为信号分子的作用,并对该领域今后的研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号