首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetical ESS-models. II. Multi-strategy models and multiple alleles   总被引:2,自引:0,他引:2  
The problem of evolutionarily stable strategies (ESS) in sexual populations can be investigated by means of genetical ESS-models which link common sense, phenotypic ESS-models to an underlying genetical system. Thorough results are obtained for multi-strategy models in diploid, panmictic populations on the basis of multi-allelic, one-locus systems. A sexual population will be maintained at a phenotypic ESS if this can possibly be produced by the genotypes currently existing. If there is enough allelic variation, the corresponding gene pool may either be an ESS itself, or belong to an attracting, continuous set of states, which all determine the same evolutionarily stable population. The latter case allows new alleles to enter and spread in the gene pool without disturbing the phenotypic ESS. If a phenotypic ESS cannot be established, ESSs of the genetical model may be found which give rise to stable populations alternatively. Since these depend on the phenotypes determined by the currently existing genotypes, they may be destabilized by the occurrence of new mutations. In this sense, they are less durable than populations maintained at a phenotypic ESS and can be expected to evolve, in the long run, towards a phenotypic ESS.  相似文献   

2.
3.
On evolutionarily stable sets   总被引:1,自引:0,他引:1  
As an extension of the concept of an evolutionarily stable strategy (ESS) evolutionarily stable sets are introduced, i.e. sets of equilibrium strategies (EQS) which have much of the properties of an ESS. They are primarily used with evolutionary game models that allow a continuum of EQSs, none of which can be an ESS, but also include common ESSs as a special case. For a large class even of nonlinear models it can be shown that the standard dynamics converge towards some equilibrium point in an ES set if started within a neighbourhood of the set. Important applications of ES sets include e.g. mixed-strategist models and evolutionary game models in sexual populations.  相似文献   

4.
This paper studies the correspondence between Nash equilibrium and evolutionary stability in large- and finite-population "playing the field" models. Whenever the fitness function is sufficiently continuous, any large-population ESS corresponds to a symmetric Nash equilibrium in the game that describes the simultaneous interaction of the individuals in the population, and any strict, symmetric Nash equilibrium in that game corresponds to a large-population ESS. This correspondence continues to hold, approximately, in finite populations; and it holds exactly for strict pure-strategy equilibria in sufficiently large finite populations. By contrast, a sequence of (mixed-strategy) finite-population ESSs can converge, as the population grows, to a limit that is not a large-population ESS, and a large-population ESS need not be the limit of any sequence of finite-population ESSs.  相似文献   

5.
The estimation of genetic differentiation between 27 horses breeds originated in USSR, based on serum proteins polymorphism (loci Tf, Al, Es) is shown. Genetical variability among aborigine breeds is higher then among cultural ones. The erosion of gene pool of Przewalski's Horse is explained by special history of this population and a few horses in analyzing group. Genetic distances reflect the directions and intensity of breeding. High genetical distances between Przewalski's Horse, Shetland Pony and other horses obtained could be explained by overcoming the "bottle neck" of selections in breeding process. Results of investigation shown that 9 aborigine breeds of USSR are clustered in a special group, differed from foreign horse breeds, because their gene pool was quite unique.  相似文献   

6.
Kleptoparasitism is the stealing of food by one animal from another. This has been modelled in various ways before, but all previous models have only allowed contests between two individuals. We investigate a model of kleptoparasitism where individuals are allowed to fight in groups of more than two, as often occurs in real populations. We find the equilibrium distribution of the population amongst various behavioural states, conditional upon the strategies played and environmental parameters, and then find evolutionarily stable challenging strategies. We find that there is always at least one ESS, but sometimes there are two or more, and discuss the circumstances when particular ESSs occur, and when there are likely to be multiple ESSs.  相似文献   

7.
Fogel GB  Fogel DB 《Bio Systems》2011,104(1):57-62
The behaviors of individuals and species are often explained in terms of evolutionary stable strategies (ESSs). The analysis of ESSs determines which, if any, combinations of behaviors cannot be invaded by alternative strategies. Two assumptions required to generate an ESS (i.e., an infinite population and payoffs described only on the average) do not hold under natural conditions. Previous experiments indicated that under more realistic conditions of finite populations and stochastic payoffs, populations may evolve in trajectories that are unrelated to an ESS, even in very simple games. The simulations offered here extend earlier research by employing truncation selection with random parental selection in a hawk-dove game. Payoffs are determined in pairwise contests using either the expected outcome, or the result of a random variable. In each case, however, the mean fraction of hawks over many generations and across many independent trials does not conform to the expected ESS. Implications of these results and philosophical underpinnings of ESS theory are offered.  相似文献   

8.
It is well known that for any evolutionary game there may be more than one evolutionarily stable strategy (ESS). In general, the more ESSs there are, the more difficult it is to work out how the population will behave (unless there are no ESSs at all). If a matrix game has an ESS which allows all possible pure strategies to be played, referred to as an internal ESS, then no other ESS can exist. In fact, the number of ESSs possible is highly dependent upon how many of the pure strategies each allow to be played, their support size. It is shown that if alpha is the ratio of the mean support size to the number of pure strategies n, then as n tends to infinity the greatest number of ESSs can be represented by a continuous function f(alpha) with useful regularity properties, and bounds are found for both f(alpha) and the value alpha(*), where it attains its maximum. Thus we can obtain a limit on the complexity of any particular system as a function of its mean support size.  相似文献   

9.
Evolutionarily stable (ES) sets are characterized for evolutionary games in extensive form. It is shown that, for the normal form of games involving informational symmetries or repeated play, the standard approach of determining evolutionarily stable strategies (ESSs) often fails to predict the evolutionary outcome. The dynamic stability of ES sets is proved in both the pure strategy and mixed strategy models. ES sets are shown to also generalize the notion of direct ESSs (an earlier attempt to apply ESS theory to extensive games). The theory is illustrated by three examples of biological games in extensive form.  相似文献   

10.
We have earlier analysed ESSs for the amount of parental investment (PI) that offspring are expected to solicit from their parents, given that parents acquiesce to offspring demands. The present paper considers evolutionary retaliation by the parent for species where only one parent provides PI. Two genetic loci are envisaged: one (the ‘conflictor’ locus) determines the extent of offspring solicitation; the other (the ‘suppressor’ locus) determines how parents retaliate. Solicitation is assumed to carry a cost which may affect a particular offspring uniquely if time and energy are the major costs, or may affect all offspring in a brood equally if the main cost is predation risk. Two kinds of parental retaliation are possible. Parents may supply PI in proportion to offspring demands, or may ignore solicitation altogether and give a fixed PI. Analytical models of conflict in which the parent supplies PI in proportion to solicitation yield pure ESSs with PI at a compromise level between parent and offspring interests. These are termed ‘pro rata’ ESSs. Where solicitation costs are high, an ‘offspring wins’ ESS (offspring get all they ‘want’) is possible especially for forms of conflict that affect future sibs, and a ‘parent wins’ ESS (parent supplies its optimum) is possible especially for conflict that affects contemporary sibs. When parental retaliation takes the form of ignoring offspring solicitation, this can lead to a ‘parent wins’ ESS if costs of ignoring solicitation are negligible, but where parental insensitivity carries costs, the result is an unresolvable evolutionary chase with cycling frequencies of alleles coding for parent and offspring strategies. ‘Pro rata’ ESSs cannot be invaded by ‘ignore solicitation’ mutants but ‘pro rata’ mutants can often invade at certain stages in ‘ignore solicitation’ limit cycles. We therefore conclude that the probable evolutionary end product for most species will be the ‘pro rata’ ESS in which the parent supplies more PI than would be optimal in the absence of conflict, but less PI than would be an ESS for the offspring in the absence of parental retaliation. Such ESSs will be characterized by solicitation costs; offspring will ‘ask’ for more PI than they get. In nature, under similar conditions, highest conflict will occur when both parents sustain equally the effects of conflict, or when conflict affects contemporary rather than future sibs.  相似文献   

11.
Evolutionary stable sets are used as an extension of the concept of an evolutionarily stable strategy (ESS). They have, as sets, essentially the same properties as ordinary ESSs. Here, ES sets are applied to the characterization of what will happen in an asexual population of mixed-strategists under frequency-dependent selection. Such a population will tend to establish some state, usually not a unique one, that belongs to an ES set. For an important class of widely used mixed-strategist models, ES sets are found to comprise just those population states that allow the possible behavioural acts to be equally successful, or, to put it more precisely, that establish an evolutionarily stable population strategy.  相似文献   

12.
An evolutionary dynamical system with explicit diploid genetics is used to investigate the likelihood of observing phenotypically overdominant heterozygotes versus heterozygous phenotypes that are intermediate between the homozygotes. In this model, body size evolves in a population with discrete demographic episodes and with competition limiting reproduction. A genotype-phenotype map for body size is used that can generate the two qualitative types of dominance interactions (overdominance versus intermediate dominance). It is written as a single-locus model with one focal locus and parameters summarizing the effects of alleles at other loci. Two types of evolutionarily stable strategy (ESS; continuously stable strategy, CSS) occur. The ESS is generated either (1) by the population ecology; or (2) by a local maximum of the genotype-phenotype map. Overdominant heterozygotes are expected to arise if the population evolves toward the second type of ESS, where nearly maximum body sizes are found. When other loci with partially dominant inheritance also evolve, the location of the maximum in the genotype-phenotype map repeatedly changes. It is unlikely that an evolving population will track these changes; ESSs of the second type now are at best quasi-stationary states of the evolutionary dynamics. Considering the restrictions on its probability, a pattern of phenotypic overdominance is expected to be rare.  相似文献   

13.
We examine the question of when aggressive behavior of likely losers should be part of an evolutionarily stable strategy. We modified an earlier model by the authors that found situations where likely losers initiate aggressive interactions more often than likely winners. The modifications allowed us to examine the robustness of the previous study by including an unusually high number of possible strategies (n=81) and to examine a wide range of parameter settings. First, we show that restricting attention to only a few most plausible strategies may change the overall results. Second, within the space where escalation is predicted, for a large percentage of the parameter settings (85%), an ESS exists that leads to a somewhat counterintuitive situation where escalation is more often initiated by the likely loser than by the likely winner of the contest. In contrast, an ESS that favors escalation by likely winners was found only for about 3% of parameter settings. Furthermore, we use simulations of evolution in a finite population to verify for certain parameter settings that the analytically predicted ESS's could in fact evolve. Our results suggest that ESSs in which the likely loser rather than the likely winner is expected to initiate escalation are generic and ESSs in which the opposite is true need to be explained by incorporating specific features of the biology of a given species into more detailed models.  相似文献   

14.
Efficiency in evolutionary games: Darwin, Nash and the secret handshake   总被引:5,自引:0,他引:5  
This paper considers any evolutionary game possessing several evolutionarily stable strategies, or ESSs, with differing payoffs. A mutant is introduced which will "destroy" any ESS which yields a lower payoff than another. This mutant possesses a costless signal and also conditions on the presence of this signal in each opponent. The mutant then can protect itself against a population playing an inefficient ESS by matching this against these non-signalers. At the same time, the mutants can achieve the more efficient ESS against the signaling mutant population itself. This construction is illustrated by means of the simplest possible example, a co-ordination game. The one-shot prisoner's dilemma is used to illustrate how a superior outcome which is not induced by an ESS may be temporarily but not permanently attained. In the case of the repeated prisoner's dilemma, the present argument seems to render the "evolution of co-operation" ultimately inevitable.  相似文献   

15.
Understanding community saturation is fundamental to ecological theory. While investigations of the diversity of evolutionary stable states (ESSs) are widespread, the diversity of communities that have yet to reach an evolutionary endpoint is poorly understood. We use Lotka–Volterra dynamics and trait-based competition to compare the diversity of randomly assembled communities to the diversity of the ESS. We show that, with a large enough founding diversity (whether assembled at once or through sequential invasions), the number of long-time surviving species exceeds that of the ESS. However, the excessive founding diversity required to assemble a saturated community increases rapidly with the dimension of phenotype space. Additionally, traits present in communities resulting from random assembly are more clustered in phenotype space compared to random, although still markedly less ordered than the ESS. By combining theories of random assembly and ESSs we bring a new viewpoint to both the saturation and random assembly literature.  相似文献   

16.
 This paper investigates the problem of how to conceive a robust theory of phenotypic adaptation in non-trivial models of evolutionary biology. A particular effort is made to develop a foundation of this theory in the context of n-locus population genetics. Therefore, the evolution of phenotypic traits is considered that are coded for by more than one gene. The potential for epistatic gene interactions is not a priori excluded. Furthermore, emphasis is laid on the intricacies of frequency-dependent selection. It is first discussed how strongly the scope for phenotypic adaptation is restricted by the complex nature of ‘reproduction mechanics’ in sexually reproducing diploid populations. This discussion shows that one can easily lose the traces of Darwinism in n-locus models of population genetics. In order to retrieve these traces, the outline of a new theory is given that I call ‘streetcar theory of evolution’. This theory is based on the same models that geneticists have used in order to demonstrate substantial problems with the ‘adaptationist programme’. However, these models are now analyzed differently by including thoughts about the evolutionary removal of genetic constraints. This requires consideration of a sufficiently wide range of potential mutant alleles and careful examination of what to consider as a stable state of the evolutionary process. A particular notion of stability is introduced in order to describe population states that are phenotypically stable against the effects of all mutant alleles that are to be expected in the long-run. Surprisingly, a long-term stable state can be characterized at the phenotypic level as a fitness maximum, a Nash equilibrium or an ESS. The paper presents these mathematical results and discusses – at unusual length for a mathematical journal – their fundamental role in our current understanding of evolution. Received 22 April 1994; received in revised form 10 July 1995  相似文献   

17.
M Caputi  A Mayeda  A R Krainer    A M Zahler 《The EMBO journal》1999,18(14):4060-4067
Splicing of the human immunodeficiency virus type 1 (HIV-1) pre-mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis-regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV-1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans-acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre-mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high-affinity hnRNP A1-binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV-1 splicing.  相似文献   

18.
遗传基因组学(Genetical genomics)的研究进展   总被引:1,自引:0,他引:1  
遗传基因组学(geneticalgenomics)是将微阵列技术和数量性状座位(QTL)分析结合起来,全基因组水平上定位基因表达的QTL(eQTL).它为研究复杂性状的分子机理和调控网络提供全新的手段.遗传基因组这个概念和研究策略在2001年由Janson和Nap首先提出,到目前为止,遗传基因组学已应用于酵母、老鼠、人以及玉米等植物.研究结果表明:基因表达水平的差异是可遗传的复杂性状;eQTL可以分为顺式作用eQTL和反式作用eQTL,顺式作用eQTL就是某个基因的eQTL定位到该基因所在的基因组区域,表明可能是该基因本身的差别引起mRNA水平的差别,反式作用就是eQTL定位到其他基因组区域,表明其他基因的差别控制该基因mRNA水平的差异.将eQTL结果、基因功能注解以及多种统计分析方法相结合,不仅能更准确地鉴别控制复杂性状及其相关基因表达的候选基因,而且能构建相应的基因调控网络.  相似文献   

19.
Summary Since the fitness of each individual organism in a biological community may be affected by the strategies of all other individuals in the community, the essential element of a game exists. This game is an evolutionary game where the individual organisms (players) inherit their strategies from continuous play of the game through time. Here, the strategies are assumed to be constants associated with certain adaptive parameters (such as sunlight conversion efficiency for plants or body length in animals) in a set of differential equations which describe the population dynamics of the community. By means of natural selection, these parameters will evolve to a set of strategy values that natural selection, by itself, can no longer modify, i.e. an evolutionarily stable strategy (ESS). For a given class of models, it is possible to predict the outcome of this evolutionary process by determining ESSs using an ESS maximum principle. However, heretofore, the proof of this principle has been based on a limited set of conditions. Herein, we generalize the proof by removing certain restrictions and use instead the concept of an ecological stable equilibrium (ESE). Individuals in a biological community will be at an ESE if fixing the strategies used by the individuals results in stable population densities subject to perturbations in those densities. We present both necessary and sufficient conditions for an ESE to exist and then use the ESE concept to provide a very simple proof of the ESS maximum principle (which is a necessary condition for an ESS). A simple example is used to illustrate the difference between a strategy that maximizes fitness and one that satisfies the ESS maximum principle. In general they are different. We also look for ESEs in Lotka—Volterra competition and use the maximum principle to determine when an ESE will be an ESS. Finally, we examine the applicability of these ideas to matrix games.  相似文献   

20.
The handicap principle states that stable biological signals must be honest and costly to produce. The cost of the signal should reflect the true quality of the signaller. Here, it is argued that honest signalling may be maintained although the used signals are not handicaps. A game theoretic model in the form of a game of signalling is presented: all the existing evolutionarily stable strategies (ESSs) are found. Honest and cheap signalling of male quality is shown to be evolutionarily stable if females divorce the mate if it turns out that he has cheated about his quality. However, for this ESS to apply, the cost of lost time must not be too great. The stability of the honest signalling is based on deceivers being prevented from spreading in the population because they suffer from a cost of divorce. Under some fairly strict conditions, a mixed polymorphism of dishonesty and honesty represents another possible ESS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号