首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in microbial flora and sensory characteristics of fresh ground meat (beef and pork) with pH values ranging from 5.34 to 6.13 were monitored at different isothermal storage temperatures (0 to 20 degrees C) under aerobic conditions. At all conditions tested, pseudomonads were the predominant bacteria, followed by Brochothrix thermosphacta, while the other members of the microbial association (e.g., lactic acid bacteria and Enterobacteriaceae) remained at lower levels. The results from microbiological and sensory analysis showed that changes in pseudomonad populations followed closely sensory changes during storage and could be used as a good index for spoilage of aerobically stored ground meat. The kinetic parameters (maximum specific growth rate [mu(max)] and the duration of lag phase [lambda]) of the spoilage bacteria were modeled by using a modified Arrhenius equation for the combined effect of temperature and pH. Meat pH affected growth of all spoilage bacteria except that of lactic acid bacteria. The "adaptation work," characterized by the product of mu(max) and lambda(mu(max) x lambda) was found to be unaffected by temperature for all tested bacteria but was affected by pH for pseudomonads and B. thermosphacta. For the latter bacteria, a negative linear correlation between ln(mu(max) x lambda) and meat pH was observed. The developed models were further validated under dynamic temperature conditions using different fluctuating temperatures. Graphical comparison between predicted and observed growth and the examination of the relative errors of predictions showed that the model predicted satisfactorily growth under dynamic conditions. Predicted shelf life based on pseudomonads growth was slightly shorter than shelf life observed by sensory analysis with a mean difference of 13.1%. The present study provides a "ready-to-use," well-validated model for predicting spoilage of aerobically stored ground meat. The use of the model by the meat industry can lead to effective management systems for the optimization of meat quality.  相似文献   

2.
Maximum specific growth rate (mu(max)) and lag time (lambda) were estimated from viable count and absorbance data and compared for different microorganisms, incubation systems and growth conditions. Data from 176 growth curves and 120 absorbance detection times of serially diluted cultures were evaluated using different mathematical growth models. Accurate estimates of mu(max) and lambda were obtained from individual absorbance growth curves by using the Richard model, with values of the parameter m fixed to 0.5, 1.0 or 2.0 to describing different degrees of growth dampening, as well as from absorbance detection times of serially diluted cultures. It is suggested to apply the two techniques complementarily for accurate, rapid and inexpensive estimation of microbial growth parameter values from absorbance data. In contrast, considerable limitations were demonstrated for the ability of the Exponential, the Gompertz and the Logistic models to estimate mu(max) and lambda values accurately from absorbance data. Limitations of these models were revealed due the wide range of growth conditions studies.  相似文献   

3.
Escherichia coli W3110 was grown in a chemostat under conditions of carbon limitation at various temperatures and specific growth rates (mu). Exponential survivor-time curves following cold osmotic shock were biphasic. These could be described by the sum of two exponential functions representing the survival of sensitive and resistant fractions of the population where the size of the sensitive fraction was directly proportional to mu. Decimal reduction times for the more resistant fraction were unaffected by mu yet decreased with increasing growth temperature. Sensitivity to cold shock was evaluated for an E. coli CR34 mutant, temperature-sensitive in initiation of DNA replication. When grown in the chemostat at the non-restrictive temperature (30 degrees C) sensitivity was directly proportional to mu. Following a rise in the incubation temperature to 42 degrees C, sensitivity decreased markedly and reached a minimum 45 to 60 min after the temperature increase. Sensitivity of the E. coli mutant grown at 30 degrees C and raised to 42 degrees C for 1 h was low and relatively unaffected by growth rate.  相似文献   

4.
A new model in which the maximum microbial specific growth rate ((mu)(infmax)) is described as a function of pH and temperature is presented. The seven parameters of this model are the three cardinal pH parameters (the pH below which no growth occurs, the pH above which no growth occurs, and the pH at which the (mu)(infmax) is optimal), the three cardinal temperature parameters (the temperature below which no growth occurs, the temperature above which no growth occurs, and the temperature at which the (mu)(infmax) is optimal), and the specific growth rate at the optimum temperature and optimum pH. The model is a combination of the cardinal temperature model with inflection and the cardinal pH model (CPM). The CPM was compared with the models of Wijtzes et al. and Zwietering et al. by using previously published data sets. The models were compared on the basis of the usual criteria (simplicity, biological significance and minimum number of parameters, applicability, quality of fit, minimum structural correlations, and ease of initial parameter estimation), and our results justified the choice of the CPM. Our combined model was constructed by using the hypothesis that the temperature and pH effects on the (mu)(infmax) are independent. An analysis of this new model with an Escherichia coli O157:H7 data set showed that there was a good correspondence between observed and calculated (mu)(infmax) values. The potential and convenience of the model are discussed.  相似文献   

5.
A study was made of the survival curves of E. coli B(fil+/lon-) exposed to far UV-light (lambda = 254 nm) plated immediately after liquid holding recovery and after photoreactivation and incubated overnight at 37 degrees and 42 degrees. It was shown that the survival rate was always higher at 42 degrees C irrespective of the modification technique applied. Since the temperature-induced modification was significant after complete elimination of pyrimidine dimers (PD) a conclusion was made that UV-light, in addition to PD, induced just one more type of damages modified by temperature.  相似文献   

6.
The synthetic chemostat model (SCM), originally developed to describe nonstationary growth under widely varying concentrations of the limiting substrate, was modified to account for the effects of nontrophic factors such as temperature and pH. The bacterium Geobacillus uralicus, isolated from an ultradeep well, was grown at temperatures ranging from 40 to 75 degrees C and at pH varying from 5 to 9. The biomass kinetics was reasonably well described by the SCM, including the phase of growth deceleration observed in the first hours after a change in the cultivation temperature. In an early stage of batch growth in a neutral or alkalescent medium, bacterial cells showed reversible attachment to the glass surface of the fermentation vessel. The temperature dependence of the maximum specific growth rate (micron) was fitted using the equation micron = Aexp(lambda T)/[1 + expB[1-C/(T + 273)]], where A, lambda, B, and C are constants. The maximum specific growth rate of 2.7 h-1 (generation time, 15.4 min) was attained on a complex nutrient medium (peptone and yeast extract) at 66.5 degrees C and pH 7.5. On a synthetic mineral medium with glucose, the specific growth rate declined to 1.2 h-1 and the optimal temperature for growth decreased to 62.3 degrees C.  相似文献   

7.
8.
9.
Stimulation of photosynthesis in response to elevated carbon dioxide concentration [CO2] in the short-term (min) should be highly temperature dependent at high photon flux. However, it is unclear if long-term (days, weeks) adaptation to a given growth temperature alters the temperature-dependent stimulation of photosynthesis to [CO2]. In velveltleaf (Albutilon theophrasti), the response of photosynthesis, determined as CO2 assimilation, was measured over a range of internal CO2 concentrations at 7 short-term measurement (12, 16, 20, 24, 28, 32, 36 degrees C) temperatures for each of 4 long-term growth (16, 20, 28 and 32 degrees C) temperatures. In vivo estimates of VCmax, the maximum RuBP saturated rate of carboxylation, and Jmax, the light-saturated rate of potential electron transport, were determined from gas exchange measurements for each temperature combination. Overall, previous exposure to a given growth temperature adjusted the optimal temperatures of Jmax and VCmax with subsequently greater enhancement of photosynthesis at elevated [CO2] (i.e., a greater enhancement of photosynthesis at elevated [CO2] was observed at low measurement temperatures for A. theophrasti grown at low growth temperatures compared with higher growth temperatures, and vice versa for plants grown and measured at high temperatures). Previous biochemical based models used to predict the interaction between rising [CO2] and temperature on photosynthesis have generally assumed no growth temperature effect on carboxylation kinetics or no limitation by Jmax. In the current study, these models over predicted the temperature dependence of the photosynthetic response to elevated [CO2] at temperatures above 24 degrees C. If these models are modified to include long-term adjustments of Jmax and VCmax to growth temperature, then greater agreement between observed and predicted values was obtained.  相似文献   

10.
The effects of temperature on the initial velocity kinetics of allosteric ATP sulfurylase from Penicillium chrysogenum were measured. The experiments were prompted by the structural similarity between the C-terminal regulatory domain of fungal ATP sulfurylase and fungal APS kinase, a homodimer that undergoes a temperature-dependent, reversible dissociation of subunits over a narrow temperature range. Wild-type ATP sulfurylase yielded hyperbolic velocity curves between 18 and 30 degrees C. Increasing the assay temperature above 30 degrees C at a constant pH of 8.0 increased the cooperativity of the velocity curves. Hill coefficients (n(H)) up to 1.8 were observed at 42 degrees C. The bireactant kinetics at 42 degrees C were the same as those observed at 30 degrees C in the presence of PAPS, the allosteric inhibitor. In contrast, yeast ATP sulfurylase yielded hyperbolic plots at 42 degrees C. The P. chrysogenum mutant enzyme, C509S, which is intrinsically cooperative (n(H) = 1.8) at 30 degrees C, became more cooperative as the temperature was increased yielding n(H) values up to 2.9 at 42 degrees C. As the temperature was decreased, the cooperativity of C509S decreased; n(H) was 1.0 at 18 degrees C. The cumulative results indicate that increasing the temperature increases the allosteric constant, L, i.e., promotes a shift in the base-level distribution of enzyme molecules from the high MgATP affinity R state toward the low MgATP affinity T state. As a result, the enzyme displays a true "temperature optimum" at subsaturating MgATP. The reversible temperature-dependent transitions of fungal ATP sulfurylase and APS kinase may play a role in energy conservation at high temperatures where the organism can survive but not grow optimally.  相似文献   

11.
Growth characteristics of bakers' yeast in ethanol   总被引:1,自引:0,他引:1  
The influence of temperature (15 degrees -40 degrees C) and pH (2.5-6.0) on the continuous growth of bakers' yeast (Saccharomyces cerevisiae) at steady state in 1% ethanol was investigated. Optimal temperature and pH were 30 degrees C and 4.5, respectively. The short-term effect of ethanol concentration (0.1-10.0%) on the yeast growth was assessed in batch culture. Up to 1% of ethanol, the yeast growth increased in function of the ethanol concentration in the medium. The biomass reached a maximum within the interval of 1-4% of ethanol (7.9 and 31.6 g/L, respectively) and decreased at higher concentrations. The residual ethanol concentration in the medium increased rapidly when the initial ethanol concentration exceeded 4%. The best-fit model obtained for growth inhibition as a function of ethanol concentrations was that of Tseng and Wayman: mu(m)S/)K + S( - i (S - S(theta)). With this model, the specific growth rate (mu) decreased linearly as the ethanol concentration increased between the threshold value (S(theta)) of 11.26 g/L to be fully inhibited at 70.00 g/L (S;) an inhibition constant (i) of 0.0048 g L(-1) h(-1), a maximum specific growth rate (mu(m)) of 0.284 h(-1), and a saturation constant (K) of 0.611 g/L were obtained.  相似文献   

12.
Summary A new modified Square Root model and two new modified Schoolfield models were evaluated for their ability to predict the growth rate ofYersinia enterocolitica as a function of temperature. The new Square Root model fits the data better than both the original Square Root model and the Zwietering Square Root model. Both new Schoolfield models, a six-and a four-parameter equation, fit the data better than the original Schoolfield model. The new four-parameter Schoolfield model was developed by removing the term describing low temperature inactivation from the new six-parameter Schoolfield model. Inclusion of the two extra parameters in the new six-parameter Schoolfield model (F=318) did not significantly improve the fit compared to the new fourparameter Schoolfield model (F=488).  相似文献   

13.
Aims: The dynamics of Escherichia coli near the maximum temperature for growth in a rich medium are analysed. The effects of temperature history, medium composition and physiological state of the inoculum are evaluated. Methods and Results: Kinetics of E. coli K12 MG1655 is studied in ‘brain–heart infusion’ broth in a temperature controlled environment. Based on viable counts, ‘smooth’ growth curves are observed at 40, 41, 42 and 43°C. The exponential growth phase at 44 and 45°C is interrupted. At 46°C, a period of exponential growth is followed by inactivation. Neither the physiological state of the inoculum nor medium enrichment alters the dynamics, whilst temperature pre‐adaptation or chemical chaperones restore regular cell growth and division (‘smooth’ exponential growth). Conclusions: Atypical, nonexponential growth at 44, 45 and 46°C seems related to protein destabilization and can (partly) be restored by an appropriate medium design (i.e. addition of chemical chaperones) or temperature history (i.e. selection of a more resistant subpopulation). Significance and Impact of the Study: This study indicates that the maximum temperature for growth is dependent on the temperature history and the chemical environment. These observations and the nonexponential kinetics have important implications for the development of predictive models for food safety and quality.  相似文献   

14.
AIMS: To provide data on the effects on culture temperature and physiological state of cells on heat resistance of Enterococcus faecium, which may be useful in establishing pasteurization procedures. METHODS AND RESULTS: The heat resistance of this Ent. faecium (ATCC 49624 strain) grown at different temperatures was monitored at various stages of growth. In all cases, the bacterial cells in the logarithmic phase of growth were more heat sensitive. For cells which had entered in the stationary phase, D70 values of 0.53 min at 5 degrees C, 0.74 min at 10 degrees C, 0.83 min at 20 degrees C, 0.79 min at 30 degrees C, 0.63 min at 37 degrees C, 0.48 min at 40 degrees C and 0.41 min at 45 degrees C were found. By extending the incubation times cells were more heat resistant as stationary phase progressed, although a different pattern was observed for cells grown at different temperatures. At the lower temperatures heat resistance increased progressively, reaching D70 values of 1.73 min for cells incubated at 5 degrees C for 50 days and 1.04 min for those grown at 10 degrees C for 16 days. At other temperatures assayed heat resistance became stable for late stationary phase cells, reaching D70 values of 1.05, 1.08 and 1.01 min for cultures incubated at 20, 30 and 37 degrees C. Heat resistance of cells obtained at higher temperatures, 40 and 45 degrees C, was significantly lower, with D70 values of 0.76 and 0.67 min, respectively. Neither the growth temperature nor the growth phase modified the z-values significantly. CONCLUSIONS: D70 values obtained for Ent. faecium (ATCC 49624) varies from 0.33 to 1.73 min as a function of culture temperature and physiological state of cells. However, z values calculated were not significantly influenced by these factors. A mean value of 4.50 +/- 0.39 degrees C was found. SIGNIFICANCE AND IMPACT OF THE STUDY: Overall results strongly suggest that, to establish heat processing conditions of pasteurized foods ensuring elimination of Ent. faecium, it is advisable to take into account the complex interaction of growth temperature and growth phase of cells acting on bacterial thermal resistance.  相似文献   

15.
Bacteriophage lambdahyp mutants have been isolated as survivors of Escherichia coli K-12 bacteria lysogenic for lambda Nam7am53cI857. The hyp mutants are characterized by (i) their localization in the y region very close to the imm lambda/imm434 boundary, (ii) polarity on O gene expression, (iii) immediate recovery of lambda immunity at 30 degrees C after prolonged growth of lambda Nam7am53cI857 hyp lysogens at 42 degrees C even in the presence of an active cro gene product, (iv) ability of phage lambda v2v3vs326 but not lambda v1v2v3 to propagate on lambda cI+hyp lysogens, (v) inability to express lambda exonuclease activity after prophage induction, and (vi) inviability at any temperature of phage carrying the hyp mutation. All these properties are referred to collectively as the Hyp phenotype. We show that the Hyp phenotype is due to cII-independent constitutive cI-gene-product synthesis originating in the y region, which results in the synthesis of anti-cro RNA species, and constitutive levels of cro gene product present even in lambda cI+hyp lysogens. A model is presented which is consistent with all the experimental observations.  相似文献   

16.
The penicillin-binding proteins (PBPs) of 209 cell division (or growth) temperature-sensitive mutants of Streptococcus faecium were analyzed in this study. A total of nine strains showed either constitutive or temperature-sensitive conditional damage in the PBPs. Analysis of these nine strains yielded the following results: one carried a PBP 1 constitutively showing a lower molecular weight; one constitutively lacked PBP 2; two lacked PBP 3 at 42 degrees C, but not at 30 degrees C; one was normal at 30 degrees C but at 42 degrees C lacked PBP 3 and overproduced PBP 5; two were normal at 42 degrees C and lacked PBP 5 at 30 degrees C; one constitutively lacked PBP 5; and one carried a PBP 6 constitutively split in two bands. The mutant lacking PBP 3 and overproducing PBP 5 continued to grow at 42 degrees C for 150 min and then lysed. Revertants selected for growth capability at 42 degrees C from the mutants altered in PBPs 5 and 6 maintained the same PBP alterations, while those isolated from the strains with altered PBP 1 or lacking PBP 2 or PBP 3 showed a normal PBP pattern. Penicillin-resistant derivatives were isolated at 30 degrees C from the mutants lacking PBP 2 and from that lacking PBP 3. All these derivatives continued to show the same PBP damage as the parents, but overproduced PBP 5 and grew at 42 degrees C. These findings indicate that high-molecular-weight, but not low-molecular-weight, PBPs are essential for cell growth in S. faecium. This is in complete agreement with previous findings obtained with a different experimental system. On the basis of both previous and present data it is suggested that PBPs 1, 2, and 3 appear necessary for cell growth at optimal temperature (and at maximal rate), but not for cell growth at a submaximal one (or at a reduced rate), and an overproduced PBP 5 is capable of taking over the function of PBPs 1, 2, and 3.  相似文献   

17.
This study investigated the effect of temperature (5-30 degrees C), water activity (0.775-0.90 aw) and their interactions on the temporal rates of germination and mycelial growth of three species of Eurotium on flour wheat sucrose medium. Germination was quite rapid at aw >0.85, with an almost linear increase with time for all isolates. However, under more extreme water stress, germination was slower. The aw minima for germination were usually lower than those for growth and varied with temperature. The effect of aw x temperature interactions on the lag phases (h) prior to germination and on the germination rates (h-1) were predicted using the Gompertz model modified by Zwietering. Eurotium spp. had shown short lag times at 0.90 aw over a wide range of temperatures. At marginal temperatures, lag phases were significantly longer, especially at >15 degrees C. The temperature x aw profiles for mycelial growth varied between species in terms of rates (mm d(-1)). Predictions of the effect of important environmental factors, such as temperature, aw and their interactions on lag times to germination, germination rates and mycelial growth, are important in the development of hurdle technology approaches to predict fungal spoilage in food products.  相似文献   

18.
We investigated the effects of temperature, water activity (a(w)), and syrup film composition on the CFU growth of Wallemia sebi in crystalline sugar. At a high a(w) (0.82) at both high (20 degrees C) and low (10 degrees C) temperatures, the CFU growth of W. sebi in both white and extrawhite sugar could be described using a modified Gompertz model. At a low a(w) (0.76), however, the modified Gompertz model could not be fitted to the CFU data obtained with the two sugars due to long CFU growth lags and low maximum specific CFU growth rates of W. sebi at 20 degrees C and due to the fact that growth did not occur at 10 degrees C. At an a(w) of 0.82, regardless of the temperature, the carrying capacity (i.e., the cell concentration at t = infinity) of extrawhite sugar was lower than that of white sugar. Together with the fact that the syrup film of extrawhite sugar contained less amino-nitrogen relative to other macronutrients than the syrup film of white sugar, these results suggest that CFU growth of W. sebi in extrawhite sugar may be nitrogen limited. We developed a secondary growth model which is able to predict colony growth lags of W. sebi on syrup agar as a function of temperature and a(w). The ability of this model to predict CFU growth lags of W. sebi in crystalline sugar was assessed.  相似文献   

19.
The heat stress response was studied in Lactobacillus helveticus PR4 during propagation in cheese whey with a gradient of naturally decreasing temperature (55 to 20 degrees C). Growth under a gradient of decreasing temperature was compared to growth at a constant temperature of 42 degrees C. Proteinase, peptidase, and acidification activities of L. helveticus PR4 were found to be higher in cells harvested when 40 degrees C was reached by a gradient of decreasing temperature than in cells grown at constant temperature of 42 degrees C. When cells grown under a temperature gradient were harvested after an initial exposure of 35 min to 55 degrees C followed by decreases in temperature to 40 (3 h), 30 (5 h 30 min), or 20 degrees C (13 h 30 min) and were then compared with cells grown for the same time at a constant temperature of 42 degrees C, a frequently transient induction of the levels of expression of 48 proteins was found by two-dimensional electrophoresis analysis. Expression of most of these proteins increased following cooling from 55 to 40 degrees C (3 h). Sixteen of these proteins were subjected to N-terminal and matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses. They were identified as stress proteins (e.g., DnaK and GroEL), glycolysis-related machinery (e.g., enolase and glyceraldehyde-3-phosphate dehydrogenase), and other regulatory proteins or factors (e.g., DNA-binding protein II and ATP-dependent protease). Most of these proteins have been found to play a role in the mechanisms of heat stress adaptation in other bacteria.  相似文献   

20.
The heat resistance of nine strains of Streptococcus faecium isolated from frankfurters was determined at 63 and 68 degrees C in brain heart infusion broth. Exponential-phase cultures (approximately 10(7) colonies/mL) were used as inoculants. The heat resistance of S. faecium DP2181, a moderately resistant isolate, was further examined in broth (55, 63, and 68 degrees C) and frankfurter emulsion (63 and 68 degrees C). The decimal reduction times (D values) were determined by regression. In broth, both time-temperature combinations resulted in a 3-4 log decline in bacterial numbers for the nine S. faecium strains tested. For S. faecium DP2181, the survivor curves deviated from the logarithmic order of death at all three heating temperatures. An initial slow period of death was evident at 55 degrees C and a resistant tail of organisms was observed at 55, 63, and 68 degrees C. The D55D63, and, D68 values for the logarithmic portion of the corresponding survivor curves were 105.6, 9.36, and 3.34 min, respectively. The survival of DP2181 was enhanced by the frankfurter emulsion. The results indicate that populations of S. faecium existed that were very heat resistant and could survive normal frankfurter processing if initially present in high numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号