首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both VEGF and insulin are implicated in the pathogenesis of diabetic retinopathy. While it has been established for many years that the number of cell surface receptors impacts upon VEGF and insulin action, little is known about the precise machinery and proteins driving VEGF-R2 and IR degradation. Here, we investigate the role of Hepatocyte growth factor-Regulated tyrosine kinase Substrate (Hrs), a regulator of RTK trafficking, in VEGF and insulin signaling. We report that ectopic expression of Hrs increases VEGF-R2 and IR number and tyrosine phosphorylation, leading to amplification of their downstream signaling. The UIM (Ubiquitin Interacting Motif) domain of Hrs is required for Hrs-induced increases in VEGF-R2, but not in IR. Furthermore, Hrs is tyrosine-phosphorylated in response to VEGF and insulin. We show that the UIM domain is required for Hrs phosphorylation in response to VEGF, but not to insulin. Importantly, Hrs co-localizes with both VEGF-R2 and IR and co-immunoprecipitates with both in a manner independent of the Hrs-UIM domain. Finally, we demonstrate that Hrs inhibits Nedd4-mediated VEGF-R2 degradation and acts additively with Grb10. We conclude that Hrs is a positive regulator of VEGF-R2 and IR signaling and that ectopic expression of Hrs protects both VEGF-R2 and IR from degradation.  相似文献   

2.
The adaptor protein Grb10 is an interacting partner of the IGF-I receptor (IGF-IR) and the insulin receptor (IR). Previous work from our laboratory has established the role of Grb10 as a negative regulator of IGF-IR-dependent cell proliferation. We have shown that Grb10 binds the E3 ubiquitin ligase Nedd4 and promotes IGF-I-stimulated ubiquitination, internalization, and degradation of the IGF-IR, thereby giving rise to long-term attenuation of signaling. Recent biochemical evidence suggests that tyrosine-kinase receptors (RTK) may not be polyubiquitinated but monoubiquitinated at multiple sites (multiubiquitinated). However, the type of ubiquitination of the IGF-IR is still not defined. Here we show that the Grb10/Nedd4 complex upon ligand stimulation mediates multiubiquitination of the IGF-IR, which is required for receptor internalization. Moreover, Nedd4 by promoting IGF-IR ubiquitination and internalization contributes with Grb10 to negatively regulate IGF-IR-dependent cell proliferation. We also demonstrate that the IGF-IR is internalized through clathrin-dependent and-independent pathways. Grb10 and Nedd4 remain associated with the IGF-IR in early endosomes and caveosomes, where they may participate in sorting internalized receptors. Grb10 and Nedd4, unlike the IGF-IR, which is targeted for lysosomal degradation are not degraded and likely directed into recycling endosomes. These results indicate that Grb10 and Nedd4 play a critical role in mediating IGF-IR down-regulation by promoting ligand-dependent multiubiquitination of the IGF-IR, which is required for receptor internalization and regulates mitogenesis.  相似文献   

3.
The adapter protein Grb10 belongs to a superfamily of related proteins, including Grb7, -10, and -14 and Caenorhabditis elegans Mig10. Grb10 is an interacting partner of the insulin-like growth factor I receptor (IGF-IR) and the insulin receptor (IR). Previous work showed an inhibitory effect of mouse Grb10 (mGrb10alpha) on IGF-I-mediated mitogenesis (A. Morrione et al., J. Biol. Chem. 272:26382-26387, 1997). With mGrb10alpha as bait in a yeast two-hybrid screen, mouse Nedd4 (mNedd4-1), a ubiquitin protein ligase, was previously isolated as an interacting protein of Grb10 (A. Morrione et al., J. Biol. Chem. 274:24094-24099, 1999). However, Grb10 is not ubiquitinated by Nedd4 in cells. Here we show that in mouse embryo fibroblasts overexpressing Grb10 and the IGF-IR (p6/Grb10), there is a strong ligand-dependent increase in ubiquitination of the IGF-IR compared with that in parental cells (p6). This increased ubiquitination is associated with a shorter half-life and increased internalization of the IGF-IR. The IGF-IR is stabilized following treatment with both MG132 and chloroquine, indicating that both the proteasome and lysosomal pathways mediate degradation of the receptor. Ubiquitination of the IGF-IR likely occurs at the plasma membrane, prior to the formation of endocytic vesicles, as it is insensitive to dansylcadaverine, an inhibitor of early endosome formation in IGF-IR endocytosis. Grb10 coimmunoprecipitates with the IGF-IR and endogenous Nedd4 in p6/Grb10 cells, suggesting the presence of a Grb10/Nedd4/IGF-IR complex. Ubiquitination of the IGF-IR in p6/Grb10 cells is severely impaired by overexpression of a catalytically inactive Nedd4 mutant (Nedd4-CS), which also stabilizes the receptor. Likewise, overexpression of a Grb10 mutant lacking the Src homology 2 (SH2) domain impaired ubiquitination of the IGF-IR in parental p6 and p6/Grb10 cells, indicating that Grb10 binding to Nedd4 is critical for ubiquitination of the receptor. These results suggest a role for the Grb10/Nedd4 complex in regulating ubiquitination and stability of the IGF-IR, and they suggest that Grb10 serves as an adapter to form a bridge between Nedd4 and the IGF-IR. This is the first demonstration of regulation of stability of a tyrosine kinase receptor by the Nedd4 (HECT) family of E3 ligases.  相似文献   

4.
mGrb10 interacts with Nedd4.   总被引:1,自引:0,他引:1  
We have utilized the yeast two-hybrid system to identify proteins interacting with mouse Grb10, an adapter protein known to interact with both the insulin and the insulin-like growth factor-I receptors. We have isolated a mouse cDNA clone containing the C2 domain of mouse Nedd4, a ubiquitin protein ligase (E3) that also contains a hect (homologous to the E6-AP carboxyl-terminus) domain and three WW domains. The interaction with Grb10 in the two-hybrid system was confirmed using the full-length Nedd4, and it was abolished by deleting the last 148 amino acids of Grb10, a region that includes the SH2 domain and the newly identified BPS domain. The interaction between Grb10 and Nedd4 was also reproduced in vivo in mouse embryo fibroblasts, where endogenous Nedd4 co-immunoprecipitated constitutively with both the endogenous and an overexpressed Grb10. This interaction was Ca(2+)-independent. Grb10 interacting with Nedd4 was not ubiquitinated in vivo, raising the possibility that this interaction may be used to target other proteins, like tyrosine kinase receptors, for ubiquitination.  相似文献   

5.
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquitin ligase that decreases cell surface expression of the channel and possibly stimulates its degradation. The mechanistic basis for this SGK1-induced Nedd4-2 inhibition is currently unknown. In this study we show that SGK1-mediated phosphorylation of Nedd4-2 induces its interaction with members of the 14-3-3 family of regulatory proteins. Through functional characterization of Nedd4-2-mutant proteins, we demonstrate that this interaction is required for SGK1-mediated inhibition of Nedd4-2. The concerted action of SGK1 and 14-3-3 appears to disrupt Nedd4-2-mediated ubiquitination of ENaC, thus providing a mechanism by which SGK1 modulates the ENaC-mediated Na(+) current. Finally, the expression pattern of 14-3-3 is also consistent with a functional role in distal nephron Na(+) transport. These results demonstrate a novel, physiologically significant role for 14-3-3 proteins in modulating ubiquitin ligase-dependent pathways in the control of epithelial ion transport.  相似文献   

6.
7.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   

8.
Regulation of epithelial Na(+) channel (ENaC)-mediated transport in the distal nephron is a critical determinant of blood pressure in humans. Aldosterone via serum and glucocorticoid kinase 1 (SGK1) stimulates ENaC by phosphorylation of the E3 ubiquitin ligase Nedd4-2, which induces interaction with 14-3-3 proteins. However, the mechanisms of SGK1- and 14-3-3-mediated regulation of Nedd4-2 are unclear. There are three canonical SGK1 target sites on Nedd4-2 that overlap phosphorylation-dependent 14-3-3 interaction motifs. Two of these are termed "minor," and one is termed "major," based on weak or strong binding to 14-3-3 proteins, respectively. By mass spectrometry, we found that aldosterone significantly stimulates phosphorylation of a minor, relative to the major, 14-3-3 binding site on Nedd4-2. Phosphorylation-deficient minor site Nedd4-2 mutants bound less 14-3-3 than did wild-type (WT) Nedd4-2, and minor site Nedd4-2 mutations were sufficient to inhibit SGK1 stimulation of ENaC cell surface expression. As measured by pulse-chase and cycloheximide chase assays, a major binding site Nedd4-2 mutant had a shorter cellular half-life than WT Nedd4-2, but this property was not dependent on binding to 14-3-3. Additionally, a dimerization-deficient 14-3-3ε mutant failed to bind Nedd4-2. We conclude that whereas phosphorylation at the Nedd4-2 major site is important for interaction with 14-3-3 dimers, minor site phosphorylation by SGK1 may be the relevant molecular switch that stabilizes Nedd4-2 interaction with 14-3-3 and thus promotes ENaC cell surface expression. We also propose that major site phosphorylation promotes cellular Nedd4-2 protein stability, which potentially represents a novel form of regulation for turnover of E3 ubiquitin ligases.  相似文献   

9.
BACKGROUND: Ligand-induced proteolytic cleavage and internalization of the plasma membrane receptor Notch leads to its activation. Ligand-independent, steady-state internalization of Notch, however, does not lead to activation. The mechanism by which downstream effectors discriminate between these bipartite modes of Notch internalization is not understood. Nedd4 is a HECT domain-containing E3 ubiquitin ligase that targets transmembrane receptors containing the PPSY motif for endocytosis. Deltex is a positive Notch signaling regulator that encodes a putative ubiquitin ligase of the ring finger type. RESULTS: We used the Drosophila system to show that Notch is ubiquitinated and destabilized by Nedd4 in a manner requiring the PPSY motif in the Notch intracellular domain. Loss of Nedd4 function dominantly suppresses the Notch and Deltex mutant phenotypes, and its hyperactivation attenuates Notch activity. In tissue culture cells, the dominant-negative form of Nedd4 blocks steady-state Notch internalization and activates Notch signaling independently of ligand binding. This effect was further potentiated by Deltex. Nedd4 destines Deltex for degradation in a Notch-dependent manner. CONCLUSIONS: Nedd4 antagonizes Notch signaling by promoting degradation of Notch and Deltex. This Nedd4 function may be important for protecting unstimulated cells from sporadic activation of Notch signaling.  相似文献   

10.
The Tweety proteins comprise a family of chloride ion channels with three members identified in humans (TTYH1-3) and orthologues in fly and murine species. In humans, increased TTYH2 expression is associated with cancer progression, whereas fly Tweety is associated with developmental processes. Structurally, Tweety proteins are characterized by five membrane-spanning domains and N-glycan modifications important for trafficking to the plasma membrane, where these proteins are oriented with the amino terminus located extracellularly and the carboxyl terminus cytoplasmically. In addition to N-glycosylation, ubiquitination mediated by the HECT type E3 ubiquitin ligase Nedd4-2 is a post-translation modification important in regulating membrane proteins. In the present study, we performed a comprehensive analysis of the ability of each of TTYH1-3 to interact with Nedd4-2 and to be ubiquitinated and regulated by this ligase. Our data indicate that Nedd4-2 binds to two family members, TTYH2 and TTYH3, which contain consensus PY ((L/P)PXY) binding sites for HECT type E3 ubiquitin ligases, but not to TTYH1, which lacks this motif. Consistently, Nedd4-2 ubiquitinates both TTYH2 and TTYH3. Importantly, we have shown that endogenous TTYH2 and Nedd4-2 are binding partners and demonstrated that the TTYH2 PY motif is essential for these interactions. We have also shown that Nedd4-2-mediated ubiquitination of TTYH2 is a critical regulator of cell surface and total cellular levels of this protein. These data, indicating that Nedd4-2 differentially interacts with and regulates TTYH1-3, will be important for understanding mechanisms controlling Tweety proteins in physiology and disease.  相似文献   

11.
gamma2-Adaptin is a putative member of the clathrin adaptor protein family with unknown physiological function. We previously reported that gamma2-adaptin acts as a ubiquitin receptor by virtue of its ubiquitin-interacting motif. Here we demonstrate that this motif mediates a specific physical interaction with the ubiquitin ligase Nedd4 and promotes ubiquitination of gamma2-adaptin. By mapping regions of Nedd4 involved in binding to gamma2-adaptin, we identified its C2 domain to be essential, whereas the WW and HECT domains are dispensable. Consistent with this, we uncovered that the C2 domain of Nedd4 is ubiquitinated itself and as such is recruited by the ubiquitin-interacting motif of gamma2-adaptin for subsequent ubiquitin conjugation. Unlike known coupled ubiquitination reactions, this novel type of interaction leads to mono- and multi/polyubiquitinated gamma2-adaptin. In addition, we show that gamma2-adaptin functions in the endosomal/multivesicular body (MVB) pathway. Depletion of gamma2-adaptin impairs the degradation of internalized epidermal growth factor and results in defective MVB morphology characterized by significantly enlarged vesicles. These defects cannot be rescued by gamma1-adaptin, a closely related homolog of gamma2-adaptin, which is unable to bind ubiquitin. Together, these results indicate that gamma2-adaptin may operate within the MVB sorting system in a manner different from that of classic adaptins.  相似文献   

12.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

13.
Conjugation of ubiquitin-like protein Nedd8 to cullins (neddylation) is essential for the function of cullin-RING ubiquitin ligases (CRLs). Here, we show that neddylation stimulates CRL activity by multiple mechanisms. For the initiator ubiquitin, the major effect is to bridge the approximately 50 A gap between naked substrate and E2 approximately Ub bound to SCF. The gap between the acceptor lysine of ubiquitinated substrate and E2 approximately Ub is much smaller, and, consequentially, the impact of neddylation on transfer of subsequent ubiquitins by Cdc34 arises primarily from improved E2 recruitment and enhanced amide bond formation in the E2 active site. The combined effects of neddylation greatly enhance the probability that a substrate molecule acquires >or= 4 ubiquitins in a single encounter with a CRL. The surprisingly diverse effects of Nedd8 conjugation underscore the complexity of CRL regulation and suggest that modification of other ubiquitin ligases with ubiquitin or ubiquitin-like proteins may likewise have major functional consequences.  相似文献   

14.
Oxygen-dependent ubiquitination of the alpha-subunit of hypoxia-inducible factor (HIF-alpha) by the (von Hippel-Lindau protein)-Elongin B/C-Cullin2-Rbx1 (VBC-Cul2) ubiquitin ligase, a member of the cullin-RING ubiquitin ligases (CRLs), plays a central role in controlling oxygen metabolism. Nedd8 conjugation of cullins enhances the ligase activity of CRLs, and the COP9/signalosome (CSN) enhances the degradation of several CRL substrates, although it removes Nedd8 from cullins. Here we demonstrate that CSN increased the efficiency of the VBC-Cul2 complex for recognizing and ubiquitinating substrates by facilitating the dissociation of ubiquitinated substrates from the pVHL subunit of the complex. Moreover CSN enhanced HIF-1alpha degradation by promoting the dissociation of HIF-1alpha from pVHL in cells. The length of the polyubiquitin chain conjugated to the substrate appeared to be involved in CSN-mediated dissociation of the substrate from pVHL. In contrast to other mechanisms underlying CSN-mediated activation of CRLs, the dissociation of ubiquitinated substrates from pVHL did not require the deneddylation activity of CSN, implying that CSN enhances degradation of CRL substrates by multiple mechanisms.  相似文献   

15.
The ubiquitin E3 protein ligase Nedd4-2 is a physiological regulator of the epithelial sodium channel ENaC, which is essential for transepithelial Na+ transport and is linked to Liddle's syndrome, an autosomal dominant disorder of human salt-sensitive hypertension. Nedd4-2 function is negatively regulated by phosphorylation via a serum- and glucocorticoid-inducible protein kinase (Sgk1), which serves as a mechanism to inhibit the ubiquitination-dependent degradation of ENaC. We report here that 14-3-3 proteins participate in this regulatory process through a direct interaction with a phosphorylated form of human Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2). The interaction is dependent on Sgk1-catalyzed phosphorylation of hNedd4-2 at Ser-468. We found that this interaction preserved the activity of the Sgk1-stimulated ENaC-dependent Na+ current while disrupting the interaction decreased ENaC density on the Xenopus laevis oocytes surface possibly by enhancing Nedd4-2-mediated ubiquitination that leads to ENaC degradation. Our findings suggest that 14-3-3 proteins modulate the cell surface density of ENaC cooperatively with Sgk1 kinase by maintaining hNedd4-2 in an inactive phosphorylated state.  相似文献   

16.
MAK-V/Hunk is a scantily characterized AMPK-like protein kinase. Recent findings identified MAK-V as a pro-survival and anti-apoptotic protein and revealed its role in embryonic development as well as in tumorigenesis and metastasis. However molecular mechanisms of MAK-V action and regulation of its activity remain largely unknown. We identified Nedd4 as an interaction partner for MAK-V protein kinase. However, this HECT-type E3 ubiquitin ligase is not involved in the control of MAK-V degradation by the ubiquitin-proteasome system that regulates MAK-V abundance in cells. However, Nedd4 in an ubiquitin ligase-independent manner rescued developmental defects in Xenopus embryos induced by MAK-V overexpression, suggesting physiological relevance of interaction between MAK-V and Nedd4. This identifies Nedd4 as the first known regulator of MAK-V function.  相似文献   

17.
Human Nedd4 ubiquitin ligase, or its variants, inhibit yeast cell growth by disturbing the actin cytoskeleton organization and dynamics, and lead to an increase in levels of ubiquitinated proteins. In a screen for multicopy suppressors which rescue growth of yeast cells producing Nedd4 ligase with an inactive WW4 domain (Nedd4w4), we identified a fragment of ATG2 gene encoding part of the Atg2 core autophagy protein. Expression of the Atg2-C1 fragment (aa 1074-1447) improved growth, actin cytoskeleton organization, but did not significantly change the levels of ubiquitinated proteins in these cells. The GFP-Atg2-C1 protein in Nedd4w4-producing cells primarily localized to a single defined structure adjacent to the vacuole, surrounded by an actin filament ring, containing Hsp42 and Hsp104 chaperones. This localization was not affected in several atg deletion mutants, suggesting that it might be distinct from the phagophore assembly site (PAS). However, deletion of ATG18 encoding a phosphatidylinositol-3-phosphate (PI3P)-binding protein affected the morphology of the GFP-Atg2-C1 structure while deletion of ATG14 encoding a subunit of PI3 kinase suppressed toxicity of Nedd4w4 independently of GFP-Atg2-C1. Further analysis of the Atg2-C1 revealed that it contains an APT1 domain of previously uncharacterized function. Most importantly, we showed that this domain is able to bind phosphatidylinositol phosphates, especially PI3P, which is abundant in the PAS and endosomes. Together our results suggest that human Nedd4 ubiquitinates proteins in yeast and causes proteotoxic stress and, with some Atg proteins, leads to formation of a perivacuolar structure, which may be involved in sequestration, aggregation or degradation of proteins.  相似文献   

18.
19.
The herpes simplex virus UL56 gene is conserved among most members of the Alphaherpesvirinae family and plays a critical role in viral pathogenicity in vivo. The HSV-2 UL56 protein (UL56) is a C-terminally anchored type II membrane protein that is predicted to be inserted into the virion envelope, leaving its N-terminal domain in the tegument. UL56 interacts with KIF1A and UL11. Here we report that UL56 also interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. Nedd4 was identified as a UL56-interacting protein by a yeast two-hybrid screen. UL56 bound to Nedd4 via its PY motifs. Nedd4 was phosphorylated and degraded in wild-type HSV-2-infected cells but not in cells infected with a UL56-deficient mutant. Ubiquitination assays revealed that UL56 increased ubiquitinated Nedd4, which was actively degraded in infected cells. UL56 also caused a decrease in Nedd4 protein levels and the increased ubiquitination in cotransfected cells. However, UL56 itself was not ubiquitinated, despite its interaction with Nedd4. Based on these findings, we propose that UL56 regulates Nedd4 in HSV-2-infected cells, although deletion of UL56 had no apparent effect on viral growth in vitro.  相似文献   

20.
RNA interference screen previously revealed that a HECT-domain E3 ubiquitin ligase, neuronal precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2), is necessary for ubiquitination and endocytosis of the dopamine transporter (DAT) induced by the activation of protein kinase C (PKC). To further confirm the role of Nedd4-2 in DAT ubiquitination and endocytosis, we demonstrated that the depletion of Nedd4-2 by two different small interfering RNA (siRNA) duplexes suppressed PKC-dependent ubiquitination and endocytosis of DAT in human and porcine cells, whereas knock-down of a highly homologous E3 ligase, Nedd4-1, had no effect on DAT. The abolished DAT ubiquitination in Nedd4-2-depleted cells was rescued by expression of recombinant Nedd4-2. Moreover, overexpression of Nedd4-2 resulted in increased PKC-dependent ubiquitination of DAT. Mutational inactivation of the HECT domain of Nedd4-2 inhibited DAT ubiquitination and endocytosis. Structure-function analysis of Nedd4-2-mediated DAT ubiquitination revealed that the intact WW4 domain and to a lesser extent WW3 domain are necessary for PKC-dependent DAT ubiquitination. Moreover, a fragment of the Nedd4-2 molecule containing WW3, WW4, and HECT domains was sufficient for fully potentiating PKC-dependent ubiquitination of DAT. Analysis of DAT ubiquitination using polyubiquitin chain-specific antibodies showed that DAT is mainly conjugated with Lys63-linked ubiquitin chains. siRNA analysis demonstrated that this polyubiquitination is mediated by Nedd4-2 cooperation with UBE2D and UBE2L3 E2 ubiquitin-conjugating enzymes. The model is proposed whereby each ubiquitinated DAT molecule is modified by a single four-ubiquitin Lys63-linked chain that can be conjugated to various lysine residues of DAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号