首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The peroxin Pex23p of the yeast Yarrowia lipolytica exhibits high sequence similarity to the hypothetical proteins Ylr324p, Ygr004p, and Ybr168p encoded by the Saccharomyces cerevisiae genome. Ylr324p, Ygr004p, and Ybr168p are integral to the peroxisomal membrane and act to control peroxisome number and size. Synthesis of Ylr324p and Ybr168p, but not of Ygr004p, is induced during incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. Cells deleted for YLR324w exhibit increased numbers of peroxisomes, whereas cells deleted for YGR004w or YBR168w exhibit enlarged peroxisomes. Ylr324p and Ybr168p cannot functionally substitute for one another or for Ygr004p, whereas Ygr004p shows partial functional redundancy with Ylr324p and Ybr168p. Ylr324p, Ygr004p, and Ybr168p interact within themselves and with Pex28p and Pex29p, which have been shown also to regulate peroxisome size and number. Systematic deletion of genes demonstrated that PEX28 and PEX29 function upstream of YLR324w, YGR004w, and YBR168w in the regulation of peroxisome proliferation. Our data suggest a role for Ylr324p, Ygr004p, and Ybr168p--now designated Pex30p, Pex31p, and Pex32p, respectively--together with Pex28p and Pex29p in controlling peroxisome size and proliferation in Saccharomyces cerevisiae.  相似文献   

2.
Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.  相似文献   

3.
M Komori  J A Kiel  M Veenhuis 《FEBS letters》1999,457(3):397-399
Hansenula polymorpha Pex14p (HpPex14p) is a component of the peroxisomal membrane essential for peroxisome biogenesis. Here, we show that HpPex14p is phosphorylated in vivo. In wild-type H. polymorpha cells, grown in the presence of [32P]orthophosphate, the 32P label was incorporated into HpPex14p. Labelled HpPex14p was induced after a shift of cells to methanol-containing media and rapidly disappeared after a shift to glucose medium, which induces specific peroxisome degradation. Alkaline phosphatase treatment of labelled HpPex14p resulted in the release of 32P and a minor shift of the HpPex14p band on Western blots. Phosphoamino acid analysis by two dimensional silica gel thin layer chromatography suggested that the major phosphoamino acid in phosphorylated HpPex14p was acid-labile.  相似文献   

4.
Saccharomyces cerevisiae pas3-mutants are described which conform the pas-phenotype recently reported for the peroxisomal assembly mutants pas1-1 and pas2 (Erdmann, R., M. Veenhuis, D. Mertens, and W.-H Kunau, 1989, Proc. Natl. Acad. Sci. USA. 86:5419-5423). The isolation of pas3-mutants enabled us to clone the PAS3 gene by functional complementation. DNA sequence analysis revealed a 50.6-kD protein with at least one domain of sufficient length and hydrophobicity to span a lipid bilayer. To verify these predictions antibodies were raised against a truncated portion of the PAS3 coding region overexpressed in E. coli. Pas3p was identified as a 48 kD peroxisomal integral membrane protein. It is shown that a lack of this protein causes the peroxisome-deficient phenotype and the cytosolic mislocalization of peroxisomal matrix enzymes. Based on protease digestion experiments Pas3p is discussed to be anchored in the peroxisomal membrane by its amino-terminus while the bulk of the molecule is exposed to the cytosol. These findings are consistent with the possibility that Pas3p is one component of the peroxisomal import machinery.  相似文献   

5.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

6.
The gene products (peroxins) of at least 29 PEX genes are known to be necessary for peroxisome biogenesis but for most of them their precise function remains to be established. Here we show that Pex15p, an integral peroxisomal membrane protein, in vivo and in vitro binds the AAA peroxin Pex6p. This interaction functionally interconnects these two hitherto unrelated peroxins. Pex15p provides the mechanistic basis for the reversible targeting of Pex6p to peroxisomal membranes. We could demonstrate that the N-terminal part of Pex6p contains the binding site for Pex15p and that the two AAA cassettes D1 and D2 of Pex6p have opposite effects on this interaction. A point mutation in the Walker A motif of D1 (K489A) decreased the binding of Pex6p to Pex15p indicating that the interaction of Pex6p with Pex15p required binding of ATP. Mutations in Walker A (K778A) and B (D831Q) motifs of D2 abolished growth on oleate and led to a considerable larger fraction of peroxisome bound Pex6p. The nature of these mutations suggested that ATP-hydrolysis is required to disconnect Pex6p from Pex15p. On the basis of these results, we propose that Pex6p exerts at least part of its function by an ATP-dependent cycle of recruitment and release to and from Pex15p.  相似文献   

7.
Pex19p is a protein required for the early stages of peroxisome biogenesis, but its precise function and site of action are unknown. We tested the interaction between Pex19p and all known Pichia pastoris Pex proteins by the yeast two-hybrid assay. Pex19p interacted with six of seven known integral peroxisomal membrane proteins (iPMPs), and these interactions were confirmed by coimmunoprecipitation. The interactions were not reduced upon inhibition of new protein synthesis, suggesting that they occur with preexisting, and not newly synthesized, pools of iPMPs. By mapping the domains in six iPMPs that interact with Pex19p and the iPMP sequences responsible for targeting to the peroxisome membrane (mPTSs), we found the majority of these sites do not overlap. Coimmunoprecipitation of Pex19p from fractions that contain peroxisomes or cytosol revealed that the interactions between predominantly cytosolic Pex19p and the iPMPs occur in the organelle pellet that contains peroxisomes. These data, taken together, suggest that Pex19p may have a chaperone-like role at the peroxisome membrane and that it is not the receptor for targeting of iPMPs to the peroxisome.  相似文献   

8.
Although many of the proteins involved in the biogenesis of the mammalian peroxisome have already been identified, our knowledge of the architecture of all this machinery is still very limited. In this work we used native gel electrophoresis and sucrose gradient sedimentation analysis in combination with immunoprecipitation experiments to address this issue. After solubilization of rat liver peroxisomes with the mild detergent digitonin, comigration of Pex5p, Pex14p, and a fraction of Pex12p was observed upon native electrophoresis and sucrose gradient sedimentation. The existence of a complex comprising Pex2p, Pex5p, Pex12p, and Pex14p was demonstrated by preparative coimmunoprecipitation experiments using an antibody directed to Pex14p. No stoichiometric amounts of Pex13p were detected in the Pex2p-Pex5p-Pex12p-Pex14p complex, although the presence of a small fraction of Pex13p in this complex could be demonstrated by Western blot analysis. Pex13p is also a component of a high molecular mass complex. Strikingly, partial purification of this Pex13p-containing complex revealed Pex13p as the major (if not the only) component. Taken together, our data indicate that Pex2p, Pex5p, Pex12p, and Pex14p, on one side, and Pex13p, on the other, are subunits of two stable protein complexes that probably interact with each other in the peroxisomal membrane.  相似文献   

9.
Previously we isolated human PEX16 encoding 336-amino acid-long peroxin Pex16p and showed that its dysfunction was responsible for Zellweger syndrome of complementation group D (group 9). Here we have determined the membrane topology of Pex16p by differential permeabilization method: both N- and C-terminal parts are exposed to the cytosol. In the search for Pex16p topogenic sequence, basic amino acids clustered sequence, RKELRKKLPVSLSQQK, at positions 66-81 and the first transmembrane segment locating far downstream, nearly by 40 amino acids, of this basic region were defined to be essential for integration into peroxisome membranes. Localization to peroxisomes of membrane proteins such as Pex14p, Pex13p, and PMP70 was interfered with in CHO-K1 cells by a higher level expression of the pex16 patient-derived dysfunctional but topogenically active Pex16pR176ter comprising resides 1-176 or of the C-terminal cytoplasmic part starting from residues at 244 to the C terminus. Furthermore, Pex16p C-terminal cytoplasmic part severely abrogated peroxisome restoration in pex mutants such as matrix protein import-defective pex12 and membrane assembly impaired pex3 by respective PEX12 and PEX3 expression, whereas the N-terminal cytosolic region did not affect restoration. These results imply that Pex16p functions in peroxisome membrane assembly, more likely upstream of Pex3p.  相似文献   

10.
Pex5p is the receptor for the vast majority of peroxisomal matrix proteins. Here, we show that about 15% of rat liver Pex5p is found in the peroxisomal fraction representing 0.06% of total peroxisomal protein. This population of Pex5p displays all the characteristics of an intrinsic membrane protein. Protease protection assays indicate that this pool of Pex5p has domains exposed on both sides of the peroxisomal membrane. The strong interaction of Pex5p with the membrane of the organelle is not affected by mild protease treatment of intact organelles, conditions that result in the partial degradation of Pex13p. Cytosolic Pex5p is a monomeric protein. In contrast, virtually all peroxisomal Pex5p was found to be part of a stable 250-kDa protein assembly. This complex was isolated and shown to comprise just two subunits, Pex5p and Pex14p.  相似文献   

11.
Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.  相似文献   

12.
The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.  相似文献   

13.
A number of peroxisome-associated proteins have been described that are involved in the import of proteins into peroxisomes, among which is the receptor for peroxisomal targeting signal 1 (PTS1) proteins Pex5p, the integral membrane protein Pex13p, which contains an Src homology 3 (SH3) domain, and the peripheral membrane protein Pex14p. In the yeast Saccharomyces cerevisiae, both Pex5p and Pex14p are able to bind Pex13p via its SH3 domain. Pex14p contains the classical SH3 binding motif PXXP, whereas this sequence is absent in Pex5p. Mutation of the conserved tryptophan in the PXXP binding pocket of Pex13-SH3 abolished interaction with Pex14p, but did not affect interaction with Pex5p, suggesting that Pex14p is the classical SH3 domain ligand and that Pex5p binds the SH3 domain in an alternative way. To identify the SH3 binding site in Pex5p, we screened a randomly mutagenized PEX5 library for loss of interaction with Pex13-SH3. Such mutations were all located in a small region in the N-terminal half of Pex5p. One of the altered residues (F208) was part of the sequence W(204)XXQF(208), that is conserved between Pex5 proteins of different species. Site-directed mutagenesis of Trp204 confirmed the essential role of this motif in recognition of the SH3 domain. The Pex5p mutants could only partially restore PTS1-protein import in pex5Delta cells in vivo. In vitro binding studies showed that these Pex5p mutants failed to interact with Pex13-SH3 in the absence of Pex14p, but regained their ability to bind in the presence of Pex14p, suggesting the formation of a heterotrimeric complex consisting of Pex5p, Pex14p, and Pex13-SH3. In vivo, these Pex5p mutants, like wild-type Pex5p, were still found to be associated with peroxisomes. Taken together, this indicates that in the absence of Pex13-SH3 interaction, other protein(s) is able to bind Pex5p at the peroxisome; Pex14p is a likely candidate for this function.  相似文献   

14.
SEC53, a gene that is required for completion of assembly of proteins in the endoplasmic reticulum in yeast, has been cloned, sequenced, and the product localized by cell fractionation. Complementation of a sec53 mutation is achieved with unique plasmids from genomic or cDNA expression banks. These inserts contain the authentic gene, a cloned copy of which integrates at the sec53 locus. An open reading frame in the insert predicts a 29-kD protein with no significant hydrophobic character. This prediction is confirmed by detection of a 28-kD protein overproduced in cells that carry SEC53 on a multicopy plasmid. To follow Sec53p more directly, a LacZ-SEC53 gene fusion has been constructed which allows the isolation of a hybrid protein for use in production of antibody. With such an antibody, quantitative immune decoration has shown that the sec53-6 mutation decreases the level of Sec53p at 37 degrees C, while levels comparable to wild-type are seen at 24 degrees C. An eightfold overproduction of Sec53p accompanies transformation of cells with a multicopy plasmid containing SEC53. Cell fractionation, performed with conditions that preserve the lumenal content of the endoplasmic reticulum (ER), shows Sec53p highly enriched in the cytosol fraction. We suggest that Sec53p acts indirectly to facilitate assembly in the ER, possibly by interacting with a stable ER component, or by providing a small molecule, other than an oligosaccharide precursor, necessary for the assembly event.  相似文献   

15.
SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.  相似文献   

16.
We identified a Saccharomyces cerevisiae peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.  相似文献   

17.
A peroxisomal C-tail-anchored type-II membrane protein, Pex26p, recruits AAA ATPase Pex1p-Pex6p complexes to peroxisomes. We herein attempted to gain mechanistic insight into Pex26p function. Pex26pΔ33-40 truncated in amino-acid residues at 33-40 abolishes the recruiting of Pex1p-Pex6p complex to peroxisomes and fails to complement the impaired phenotype of pex26 CHO cell mutant ZP167, thereby suggesting that peroxisomal localization of Pex1p and Pex6p is indispensable for the transport of matrix proteins. In in vitro transport assay using semipermeabilized CHO cells, Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. This finding is confirmed by the assay using Walker-motif mutants. Transport of Pex1p and Pex6p is temperature-dependent. In vitro binding assays with glutathione-S-transferase-fused Pex26p, Pex1p and Pex6p bind to Pex26p in a manner dependent on ATP binding but not ATP hydrolysis. These results suggest that ATP hydrolysis is required for stable localization of Pex1p to peroxisomes, but not for binding to Pex26p. Moreover, Pex1p and Pex6p are altered to a more compact conformation upon binding to ATP, as verified by limited proteolysis. Taken together, Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by the ATPase cycle.  相似文献   

18.
Peroxisomes are dynamic organelles that often proliferate in response to compounds that they metabolize. Peroxisomes can proliferate by two apparent mechanisms, division of preexisting peroxisomes and de novo synthesis of peroxisomes. Evidence for de novo peroxisome synthesis comes from studies of cells lacking the peroxisomal integral membrane peroxin Pex3p. These cells lack peroxisomes, but peroxisomes can assemble upon reintroduction of Pex3p. The source of these peroxisomes has been the subject of debate. Here, we show that the amino-terminal 46 amino acids of Pex3p of Saccharomyces cerevisiae target to a subdomain of the endoplasmic reticulum and initiate the formation of a preperoxisomal compartment for de novo peroxisome synthesis. In vivo video microscopy showed that this preperoxisomal compartment can import both peroxisomal matrix and membrane proteins leading to the formation of bona fide peroxisomes through the continued activity of full-length Pex3p. Peroxisome formation from the preperoxisomal compartment depends on the activity of the genes PEX14 and PEX19, which are required for the targeting of peroxisomal matrix and membrane proteins, respectively. Our findings support a direct role for the endoplasmic reticulum in de novo peroxisome formation.  相似文献   

19.
《Autophagy》2013,9(5):835-845
Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.  相似文献   

20.
The peroxisome biogenesis factor, peroxin Pex2p, is an integral membrane protein of peroxisomes [Tsukamoto, T., Miura, S., and Fujiki, Y. (1991) Nature 350, 77-81]. As a step toward elucidating the structure and biological function of Pex2p, we determined the transmembrane topology of Pex2p by expressing epitope-tagged rat Pex2p in COS-7 cells. Pex2p tagged with myc at the C-terminus was detected as a punctate staining pattern, when the cells were permeabilized with 50 microg/ml of digitonin, under which conditions intra-peroxisomal proteins such as PTS1-proteins are inaccessible to exogenous antibodies. N-terminally flag-tagged Pex2p was likewise detected upon the same treatment. These results strongly suggest that both the N- and C-terminal parts of Pex2p are exposed to the cytosol. The transmembrane orientation of Pex2p was also assessed by using rat liver peroxisomes and Pex2p region-specific antibodies. The two types of antibodies used, raised to the N- (amino acid residues 1-131) and C-terminal part (residues 226 to the C-terminus), respectively, specifically recognized Pex2p and immunoprecipitated intact, whole peroxisomes. Pex2p was not recognized by the antibodies when the peroxisomes were treated with Proteinase K. Furthermore, in situ crosslinking studies involving bifunctional reagents revealed an apparently dimeric form of Pex2p. Therefore, Pex2p is anchored to the peroxisomal membrane by two membrane-spanning segments, with its N- and C-terminal regions exposed to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号