首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome annotations of all sequenced Dehalococcoides strains lack a citrate synthase, although physiological experiments have indicated that such an activity should be encoded. We here report that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrate synthase. Gene cbdbA1708 was heterologously expressed in Escherichia coli, and the recombinant enzyme was purified. The enzyme catalyzed the condensation of oxaloacetate and acetyl coenzyme A (acetyl-CoA) to citrate. The protein did not have homocitrate synthase activity and was inhibited by citrate, and Mn2+ was needed for full activity. The stereospecificity of the heterologously expressed citrate synthase was determined by electrospray ionization liquid chromatography-mass spectrometry (ESI LC/MS). Citrate was synthesized from [2-(13)C]acetyl-CoA and oxaloacetate by the Dehalococcoides recombinant citrate synthase and then converted to acetate and malate by commercial citrate lyase plus malate dehydrogenase. The formation of unlabeled acetate and 13C-labeled malate proved the Re face-specific activity of the enzyme. Shotgun proteome analyses of cell extracts of strain CBDB1 demonstrated that cbdbA1708 is expressed in strain CBDB1.  相似文献   

2.
The fluorescence polarization of 8-hydroxypyrene (1,3,6)trisulfonate (HPT) increases upon interaction with pig heart citrate synthase. Titration of HPT with increasing concentrations of citrate synthase exhibits a hyperbolic saturation behavior, from which the dissociation constant of the enzyme-HPT complex (3.64 +/- 0.3 microM) was determined. The enzyme-HPT interaction is competitively inhibited by oxaloacetate (but not affected by acetyl CoA) with a Ki of 4.3 +/- 1.8 microM. This value is similar to the dissociation constant (Kd = 4.5 +/- 1.6 microM) for the enzyme-oxalocetate complex (determined in the absence of any effector ligand), as well as to the Km for oxaloacetate (3.9 +/- 0.7 microM) in a steady-state citrate synthase catalyzed reaction at a saturating concentration of acetyl CoA. However, the dissociation constant for the citrate synthase-oxaloacetate complex determined by the urea denaturation method is at least 25-fold lower than those determined by the other methods. This suggests an effector role of urea in strengthening the enzyme-oxaloacetate interaction. At low nondenaturing concentrations, urea inhibits the citrate synthase catalyzed reaction in an uncompetitive manner with respect to oxaloacetate, i.e., the Km for oxaloacetate decreases with an increase in urea concentration. This further suggests that urea stabilizes the interaction between citrate synthase and oxaloacetate. The effect of urea is specific for the substrate oxaloacetate, and not for the substrate analogue, HPT, although both these ligands bind citrate synthase with equal affinities, and protect the enzyme against thermal denaturation with equal magnitudes. The results presented herein are discussed in the light of known conformational states of the enzyme.  相似文献   

3.
Z Gojkovi?  M P Sandrini  J Piskur 《Genetics》2001,158(3):999-1011
beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes.  相似文献   

4.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

5.
Extramitochondrial citrate synthase activity in bakers'' yeast.   总被引:8,自引:6,他引:2       下载免费PDF全文
We isolated the gene for citrate synthase (citrate oxaloacetate lyase; EC 4.1.3.7) from Saccharomyces cerevisiae and ablated it by inserting the yeast LEU2 gene within its reading frame. This revealed a second, nonmitochondrial citrate synthase. Like the mitochondrial enzyme, this enzyme was sensitive to glucose repression. It did not react with antibodies against mitochondrial citrate synthase. Haploid cells lacking a gene for mitochondrial citrate synthase grew somewhat slower than wild-type yeast cells, but exhibited no auxotrophic growth requirements.  相似文献   

6.
The non-Michaelis-Menten kinetics, burst and steady-state periods, expressed by citrate synthase in the presence of citryl-CoA, were investigated by labelling experiments with trace amounts of [14C]acetyl-CoA. The results indicate that citrate becomes labelled in the reaction of liberated acetyl-CoA with the binary synthase.oxaloacetate complex that is transiently generated in the lyase reaction of citryl-CoA. Mediated by the hydrolase function of synthase, the counteracting citryl-CoA lyase and ligase reactions operate towards a transient flow equilibrium. This precedes the thermodynamic equilibrium and is established during the burst period; it is maintained under steady-state conditions and corresponds to the formation of transiently nonproductive synthase. The rates of both synthase partial reactions, therefore, are likewise affected. Oxaloacetate in the presence of acetyl-CoA competitively inhibits the hydrolysis of citryl-CoA and vice versa. In the synthase dependence of the burst periods and during the time dependence of the steady-state periods, nonproportionally more of physiological substrates participate in citrate formation. The nonproportional increase is a consequence of the continuously changing conditions to establish or to maintain the flow equilibrium, respectively, during the reaction progress. Third rate periods after the steady state result if the equilibrium conditions cannot be satisfied. High concentrations of oxaloacetate inhibit the expression of non-Michaelis-Menten kinetics by formation of nonproductive synthase.oxaloacetate complex. The supply of acetyl-CoA is then sufficient and the formation of the flow equilibrium prevented. The implication of the results with structural work is discussed.  相似文献   

7.
Spermine activated citrate synthase from porcine heart by decreasing the Km value for the substrate oxaloacetate without affecting the maximal velocity. Spermine markedly increased the maximal velocity of the saturation function with respect to acetyl-CoA as the substrate under conditions of intracellular concentrations of oxaloacetate, but the enzyme was not activated by spermine under conditions of higher concentrations of oxaloacetate. The concentration of spermine required for 50% activation of the enzyme was about 50 microM. Spermidine showed only a little activation, while putrescine caused no activation. Spermine, which contributes to an activation of Ca2(+)-sensitive dehydrogenases of the citric acid cycle by enhancing Ca2+ uptake into mitochondria, can activate citrate synthase directly, and is responsible for the stimulation of oxidative metabolism in mitochondria.  相似文献   

8.
The mitochondrial phospholipid cardiolipin is synthesized from cytidinediphosphate-diacylglycerol and phosphatidylglycerol, a process catalyzed by the enzyme cardiolipin synthase. In this study, we identified a human candidate gene/cDNA for cardiolipin synthase, C20orf155. Expression of this candidate cDNA in the (cardiolipin synthase-deficient) crd1Delta yeast confirmed that it indeed encodes human cardiolipin synthase. Purified mitochondria of the crd1Delta expressing human cardiolipin synthase were used to characterize the enzyme. It has an alkaline pH optimum, requires divalent cations for activity and appears to have a different substrate preference for cytidinediphosphate-diacylglycerol species when compared to phosphatidylglycerol species. The possible implications for CL synthesis and remodeling are discussed.  相似文献   

9.
A novel, potent, semisynthetic pneumocandin, L-733,560, was used to isolate a resistant mutant in Saccharomyces cerevisiae. This compound, like other pneumocandins and echinocandins, inhibits 1,3-beta-D-glucan synthase from Candida albicans (F.A. Bouffard, R.A. Zambias, J. F. Dropinski, J.M. Balkovec, M.L. Hammond, G.K. Abruzzo, K.F. Bartizal, J.A. Marrinan, M. B. Kurtz, D.C. McFadden, K.H. Nollstadt, M.A. Powles, and D.M. Schmatz, J. Med. Chem. 37:222-225, 1994). Glucan synthesis catalyzed by a crude membrane fraction prepared from the S. cerevisiae mutant R560-1C was resistant to inhibition by L-733,560. The nearly 50-fold increase in the 50% inhibitory concentration against glucan synthase was commensurate with the increase in whole-cell resistance. R560-1C was cross-resistant to other inhibitors of C. albicans 1,3-beta-D-glucan synthase (aculeacin A, dihydropapulacandin, and others) but not to compounds with different modes of action. Genetic analysis revealed that enzyme and whole-cell pneumocandin resistance was due to a single mutant gene, designated etg1-1 (echinocandin target gene 1), which was semidominant in heterozygous diploids. The etg1-1 mutation did not confer enhanced ability to metabolize L-733,560 and had no effect on the membrane-bound enzymes chitin synthase I and squalene synthase. Alkali-soluble beta-glucan synthesized by crude microsomes from R560-1C was indistinguishable from the wild-type product. 1,3-beta-D-Glucan synthase activity from R560-1C was fractionated with NaCl and Tergitol NP-40; reconstitution with fractions from wild-type membranes revealed that drug resistance is associated with the insoluble membrane fraction. We propose that the etg1-1 mutant gene encodes a subunit of the 1,3-beta-D-glucan synthase complex.  相似文献   

10.
The assay of oxaloacetate based on the citrate synthase catalyzed conversion of labeled acetyl-CoA to citrate has been greatly simplified by the development of a charcoal separation method for the selective adsorption of acetyl-CoA. An application of this procedure for the determination of oxaloacetate in rat livers is described. By coupling to glutamate oxaloacetate transaminase, the procedure enables determination of aspartate. It allows also a sensitive assay of glutamate oxaloacetate transaminase activity.  相似文献   

11.
The biosynthetic reaction scheme for the compatible solute mannosylglycerate in Rhodothermus marinus is proposed based on measurements of the relevant enzymatic activities in cell-free extracts and in vivo (13)C labeling experiments. The synthesis of mannosylglycerate proceeded via two alternative pathways; in one of them, GDP mannose was condensed with D-glycerate to produce mannosylglycerate in a single reaction catalyzed by mannosylglycerate synthase, in the other pathway, a mannosyl-3-phosphoglycerate synthase catalyzed the conversion of GDP mannose and D-3-phosphoglycerate into a phosphorylated intermediate, which was subsequently converted to mannosylglycerate by the action of a phosphatase. The enzyme activities committed to the synthesis of mannosylglycerate were not influenced by the NaCl concentration in the growth medium. However, the combined mannosyl-3-phosphoglycerate synthase/phosphatase system required the addition of NaCl or KCl to the assay mixture for optimal activity. The mannosylglycerate synthase enzyme was purified and characterized. Based on partial sequence information, the corresponding mgs gene was identified from a genomic library of R. marinus. In addition, the mgs gene was overexpressed in Escherichia coli with a high yield. The enzyme had a molecular mass of 46,125 Da, and was specific for GDP mannose and D-glycerate. This is the first report of the characterization of a mannosylglycerate synthase.  相似文献   

12.
Experiments are presented which show that oxaloacetate and analogs thereof with (R)-malate substructure, on interaction with citrate synthase linked to synthase 8-anilinonaphthalene 1-sulfonate (ANS), induce identical conformational changes of a characteristic magnitude. A conformational change of lower magnitude is also produced on binding of CoASH or ATP to citrate synthase.ANS and is completed on addition of oxaloacetate. The significance of these ligand-dependent conformational changes is discussed.  相似文献   

13.
A two-step method of determining reduced coenzyme A (CoASH) concentrations in tissue or cell extracts is described. In the first step, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. Acetyl-CoA is then condensed with [14C]oxaloacetate by citrate synthase to give [14C]citrate. This method allows the measurement of 10-200 pmol of CoASH. By omitting the phosphotransacetylase step, measurement of the same amount of acetyl-CoA is possible.  相似文献   

14.
Li L  Marsh EN 《Biochemistry》2006,45(46):13932-13938
The first step in the anaerobic metabolism of toluene is a highly unusual reaction: the addition of toluene across the double bond of fumarate to produce (R)-benzylsuccinate, which is catalyzed by benzylsuccinate synthase. Benzylsuccinate synthase is a member of the glycyl radical-containing family of enzymes, and the reaction is initiated by abstraction of a hydrogen atom from the methyl group of toluene. To gain insight into the free energy profile of this reaction, we have measured the kinetic isotope effects on Vmax and Vmax/Km when deuterated toluene is the substrate. At 30 degrees C the isotope effects are 1.7 +/- 0.2 and 2.9 +/- 0.1 on Vmax and Vmax/Km, respectively; at 4 degrees C they increase slightly to 2.2 +/- 0.2 and 3.1 +/- 0.1, respectively. We compare these results with the theoretical isotope effects on Vmax and Vmax/Km that are predicted from the free energy profile for the uncatalyzed reaction, which has previously been computed using density functional theory [Himo, F. (2002) J. Phys. Chem. B 106, 7688-7692]. The comparison allows us to draw some conclusions on how the enzyme may catalyze this unusual reaction.  相似文献   

15.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

16.
A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose.  相似文献   

17.
18.
Sphingolipids are ubiquitous compounds derived from ceramide that consist of a sphingoid long-chain base with a 2-amino group amide linked to fatty acid and are present in the membranes of many organisms. As a principal sphingolipid, Saccharomyces cerevisiae contains a free ceramide and its inositol-phosphorylated derivatives (acidic types) but not a neutral glycosylated ceramide, glucosylceramide (cerebroside), which usually appears in eukaryotic cells. When 31 strains accepted in the genera Saccharomyces, Torulaspora, Zygosaccharomyces, and Kluyveromyces were analyzed for sphingolipids, cerebrosides were found in S. kluyveri, Z. cidri, Z. fermentati, K. lactis, K. thermotolerans, and K. waltii. The cerebrosides of S. kluyveri and K. lactis included 9-methyl 4-trans, 8-trans-sphingadienine and its putative metabolic intermediates. A unique characteristic of S. kluyveri was the presence of a trihydroxy sphingoid base, which rarely occurs in fungal cerebrosides. A polymerase chain reaction with primers targeted to the glucosylceramide synthase gene of other microorganisms amplified the fragments of the expected size from S. kluyveri and K. lactis and further extended to the adjacent regions. The presumed protein of S. kluyveri had 54.4% similarity to that of K. lactis, higher than the glucosylceramide synthases from Candida albicans, Pichia pastoris, and other organisms. From these observations, the divergence of S. kluyveri from the lineage of K. lactis in their evolution is discussed.  相似文献   

19.
The kinetic properties of citrate synthase from rat liver mitochondria   总被引:19,自引:6,他引:13       下载免费PDF全文
1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16mum for acetyl-CoA and 2mum for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2.5. 5. The pH optimum of the enzyme is 8.7, and is not significantly affected by ATP. 6. Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6.3s, equivalent to molecular weight 95000.  相似文献   

20.
The kinetics and mechanism of the citrate synthase from a moderate thermophile, Thermoplasma acidophilum (TpCS), are compared with those of the citrate synthase from a mesophile, pig heart (PCS). All discrete steps in the mechanistic sequence of PCS can be identified in TpCS. The catalytic strategies identified in PCS, destabilization of the oxaloacetate substrate carbonyl and stabilization of the reactive species, acetyl-CoA enolate, are present in TpCS. Conformational changes, which allow the enzyme to efficiently catalyze both condensation of acetyl-CoA thioester and subsequently hydrolysis of citryl-CoA thioester within the same active site, occur in both enzymes. However, significant differences exist between the two enzymes. PCS is a characteristically efficient enzyme: no internal step is clearly rate-limiting and the condensation step is readily reversible. TpCS is a less efficient catalyst. Over a broad temperature range, inadequate stabilization of the transition state for citryl-CoA hydrolysis renders this step nearly rate-limiting for the forward reaction of TpCS. Further, excessive stabilization of the citryl-CoA intermediate renders the condensation step nearly irreversible. Values of substrate and solvent deuterium isotope effects are consistent with the kinetic model. Near its temperature optimum (70 degrees C), there is a modest increase in the reversibility of the condensation step for TpCS, but reversibility still falls short of that shown by PCS at 37 degrees C. The root cause of the catalytic inefficiency of TpCS may lie in the lack of protein flexibility imposed by the requirement for thermal stability of the protein itself or its temperature-labile substrate, oxaloacetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号