首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X chromosome inactivation in X-linked hypohidrotic ectodermal dysplasia   总被引:6,自引:0,他引:6  
  相似文献   

2.
X chromosome inactivation mosaicism in the mouse   总被引:10,自引:0,他引:10  
A cytologically detectable mosaicism resulting from X-chromosome inactivation occurring in mice heterozygous for Cattanach's translocation has been used to examine the time of X chromosome inactivation, and the sizes of primordial precursor pools for lung, thymus, spleen, fascia, and melanocytes. The extent of covariance in mosaic composition among tissues within individuals suggests that, if X inactivation occurs randomly, it must occur after determination of embryoblast cells, at some time immediately before or after implantation, and that it must occur before divergence of mesoderm from ectoderm. The extent of independent variance among the various tissues is such as to suggest that none of them arise from primordial precursor pools smaller than 20 to 30 cells.  相似文献   

3.
Blastocysts and late gestation stages of the marsupial mouse, Antechinus stuartii, were examined cytologically and electrophoretically to investigate X chromosome activity during embryogenesis. A late replicating X chromosome was identified in the protoderm cells of female unilaminar blastocysts and in the cells of embryonic and extra-embryonic regions of older blastocysts. Sex chromatin bodies were also observed in female bilaminar and trilaminar blastocysts. The X linked enzyme -galactosidase showed no evidence of paternal allele expression in the extra-embryonic region of bilaminar blastocysts or in the yolk sac and embryonic tissue of known heterozygotes. It is concluded that the late replicating X chromosome is paternal in origin and that unlike the laboratory mouse, X inactivation is not correlated with cell differentiation in Antechinus.  相似文献   

4.
Dosage compensation for the mammalian X chromosome involves the silencing of one X chromosome to achieve equal X-linked gene expression between males and females. X chromosome inactivation (XCI) is controlled by a complex set of genetic elements located in a region known as the X chromosome inactivation center, and is regulated by a combination of genomic imprinting, cell lineage-dependent erasure of imprinting, an unidentified mechanism of X chromosome counting, an incompletely understood means of selection of one X chromosome for inactivation and developmentally regulated changes in X chromosome chromatin. A detailed understanding of when and how these components of XCI occur is essential for elucidating the operative mechanisms. A model accounting for early events related to XCI, including observations in uniparental and aneuploid embryos, is presented.  相似文献   

5.
Summary By means of a double labeling method with H3-thymidine and 5-bromodeoxyuridine, it was found that the X chromosome showed no sign of change from an allocyclic to an isocyclic state, or vice versa in 6.5- and 7.5-day mouse embryos. Thus, reversal of allocycly may not account for the predominance of cells with the paternally derived X chromosome inactive in the yolk sac and the chorion of the mouse embryo.  相似文献   

6.
Three new female ES cell lines (GLM1, GLP1 and GLP2) were established from mouse embryos carrying GFP (green fluorescent protein) and HMG-lacZ transgenes on one of two X chromosomes in cis. Using these cell lines, we studied the temporal relationships among three events relevant to X-chromosome inactivation: replication asynchrony of the X chromosome, and quenching of GFP fluorescence and beta-galactosidase (beta-gal) activity, during cell differentiation induced by embryoid body (EB) formation and retinoic acid (RA) treatment. In embryoid bodies adhering to the bottom of culture dishes, GFP-negative cells appeared first in the peripheral outgrowths 4 days after the initiation of EB formation, followed about 24 hours later by the appearance of cells negative for beta-gal and those having a single allocyclic X chromosome. Although the frequency of cells with an allocyclic X chromosome could reach 80% in adherent embryoid bodies, it tended to remain low and variable in embryoid bodies maintained in suspension. In spite of apparently parallel extinction of GFP and lacZ in embryoid bodies, their concurrent occurrence did not always characterize RA-induced differentiation. Moreover, an allocyclic X chromosome was identified in not more than 20 percent of informative metaphase cells up to 10 days after initiation of RA treatment. These findings suggest that RA-induced differentiation of female ES cells does not always accompany X-inactivation.  相似文献   

7.
Transgenic mice carrying one complete copy of the human alpha 1(I) collagen gene on the X chromosome (HucII mice) were used to study the effect of X inactivation on transgene expression. By chromosomal in situ hybridization, the transgene was mapped to the D/E region close to the Xce locus, which is the controlling element. Quantitative RNA analyses indicated that transgene expression in homozygous and heterozygous females was about 125% and 62%, respectively, of the level found in hemizygous males. Also, females with Searle's translocation carrying the transgene on the inactive X chromosome (Xi) expressed about 18% transgene RNA when compared to hemizygous males. These results were consistent with the transgene being subject to but partially escaping from X inactivation. Two lines of evidence indicated that the transgene escaped X inactivation or was reactivated in a small subset of cells rather than being expressed at a lower level from the Xi in all cells, (i) None of nine single cell clones carrying the transgene on the Xi transcribed transgene RNA. In these clones the transgene was highly methylated in contrast to clones carrying the transgene on the Xa. (ii) In situ hybridization to RNA of cultured cells revealed that about 3% of uncloned cells with the transgene on the Xi expressed transgene RNA at a level comparable to that on the Xa. Our results indicate that the autosomal human collagen gene integrated on the mouse X chromosome is susceptible to X inactivation. Inactivation is, however, not complete as a subset of cells carrying the transgene on Xi expresses the transgene at a level comparable to that when carried on Xa.  相似文献   

8.
Alport syndrome (AS) and hereditary nephropathy (HN) are glomerular nephropathies caused by mutations in the genes encoding the type IV collagens. In a mixed breed of dog, termed Navasota (NAV) dogs, X-linked hereditary nephropathy (XLHN) is caused by a 10-bp deletion in exon 9 of COL4A5. Males harboring this mutation succumb to end-stage renal disease before 18 months of age. In contrast, female carriers of this disease survive much longer, most have a normal life-span, and vary in disease progression as compared with XLHN-affected males. X chromosome inactivation (XCI) patterns have been studied in human X-linked AS carriers and some have been shown to have a high degree of skewed XCI. However, similar studies have never been reported in an animal model of this disease. Therefore, patterns of XCI were examined in XLHN-carrier NAV dogs. The variation in XCI among the 26 XLHN-carrier and seven normal female NAV dogs studied was low and only three were found to preferentially inactivate one X chromosome, all of which were XLHN-carriers. The average skewedness among all dogs was 59% and 57% among the XLHN-carriers. No significant difference in XCI was found between the two groups (P = 0.477). It is clear from these data that genotype does not seem to have an effect on inactivation; the majority of these dogs have random patterns of XCI. Highly skewed X chromosome inactivation also appears to be random, given that no difference was observed between the XLHN-carriers and normal females. Because of the apparent rarity of skewed XCI, these dogs may not be a suitable model for studying a potential correlation between this phenomenon and disease progression.  相似文献   

9.
10.
In the present study, we have analysed the expression pattern of a lacZ transgene (CMZ12) in preimplantation stage mouse embryos. The transgene is expressed at the two-cell stage, where it shows cellular mosaicism due to variable expressivity. The variable gene expression indicates a partial penetrance of the transgene. The extent of variation in expression is influenced by the genetic background of the oocyte. DBA/2 and CFLP genetic backgrounds promote high expression of the transgene, while Balb/c, C57BL/6, DDK, and F1 (C57BL/6 x CBA) genetic backgrounds give none or very little lacZ activity. In vitro culture of one-cell embryos to the two-cell stage induces the expression of lacZ in all strain backgrounds tested. The variation in CMZ12 expression is a transient phenomenon and does not affect later stage activity of the transgene. Nuclear transfer experiments and DNA methylation analysis suggests that a heritable modification of the transgene locus has not occurred.  相似文献   

11.
12.
Fan G  Tran J 《Human genetics》2011,130(2):217-222
Since the groundbreaking hypothesis of X chromosome inactivation (XCI) proposed by Mary Lyon over 50 years ago, a great amount of knowledge has been gained regarding this essential dosage compensation mechanism in female cells. For the mammalian system, most of the mechanistic studies of XCI have so far been investigated in the mouse model system, but recently, a number of interesting XCI studies have been extended to human pluripotent stem cells, including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Emerging data indicate that XCI in hESCs and hiPSCs is much more complicated than that of their mouse counterparts. XCI in human pluripotent stem cells is not as stable and is subject to environmental influences and epigenetic regulation in vitro. This mini-review highlights the key differences in XCI between mouse and human stem cells with a greater emphasis placed on the understanding of the epigenetic regulation of XCI in human stem cells.  相似文献   

13.
Nobuo Takagi 《Chromosoma》1980,81(3):439-459
By means of a cytological technique involving 5-bromodeoxyuridine, acridine orange, and fluorescence microscopy, the asynchronously replicating, hence genetically inactivated, X chromosome was identified in 6-to 8-day embryos from female mice heterozygous for Searle's translocation T(X;16)16H (abbreviated as T16H) mated with either karyotypically normal males or males carrying Cattanach's translocation T(X;7)lCt in order to analyse the way in which the total inactivation of the normal X is achieved in adult T16H heterozygotes. Embryos examined included 9 Xn/X(7);16/16, 3X16/Xn;16x/16, 12X16/X(7);16x/16, 5 X16/Xn; 16/16, 8 X16/X(7); 16/16 and 2 Xn/Y; 16x/16/16. In these notations X16, 16x, X(7) and Xn represent Searle's X with the centromeric segment of the X, Searle's X with the centomeric segment of chromosome 16, Cattanachs's X with insertion of a chromosome 7 segment, and normal X, respectively. The X(7) exerted no apparent effect upon embryonic development up to the 8th day of gestation and X chromosome inactivation. — The asynchronously replicating X was the Xn in X16/ Xn;16x/16 and X(7) in X16/X(7);16x/16 embryos except a small number of cells on day 6 (13/493) and on day 7 (1/886) in which almost the entire 16x replicated asynchronously. The X16, on the other hand, never showed replication asynchrony. That the X16 is indeed unable to become inactivated was indicated by the observation that the X16 as well as Xn or X(7) did not replicate asynchronously in Xn/X16; 16/16 and X16/X(7); 16/16 embryos. X16-inactive cell lines, if occurring, should have been genetically less unbalanced than any other cell line in such embryos. It is highly likely therefore that the ultimate inactivation pattern in T16H heterozygotes has been accomplished by (1) the inability of the X16 to become inactive; (2) inactivation in favor of the Xn; and (3) rapid elimination of 16x-inactive cells. Severe growth retardation and early death of X16/Xn;16/16 and X16/X(7); 16/16 embryos having no inactive X suggested that functional X disorny is detrimental to embryogenesis. These embryos further indicated that the concurrence of at least two X chromosomal loci separated by the T16H breakpoint is necessary for the homologous X chromosome becoming inactivated.  相似文献   

14.
15.
In the early epiblast of female mice, one of the two X chromosomes is randomly inactivated by a Xist-dependent mechanism, involving the recruitment of Ezh2-Eed and the subsequent trimethylation of histone 3 on lysine 27 (H3K27me3). We demonstrate that this random inactivation process applies also to the primordial germ cell (PGC) precursors, located in the proximal region of the epiblast. PGC specification occurs at about embryonic day (E)7.5, in the extraembryonic mesoderm, after which the germ cells enter the endoderm of the invaginating hindgut. As they migrate towards the site of the future gonads, the XX PGCs gradually lose the H3K27me3 accumulation on the silent X chromosome. However, using a GFP transgene inserted into the X chromosome, we observed that the XX gonadal environment (independently of the gender) is important for the substantial reactivation of the inactive X chromosome between E11.5 and E13.5, but is not required for X-chromosome reactivation during the derivation of pluripotent embryonic germ cells. We describe in detail one of the key events during female PGC development, the epigenetic reprogramming of the X chromosome, and demonstrate the role of the XX somatic genital ridge in this process.  相似文献   

16.
Female mammalian cells silence one of their two X chromosomes, resulting in equal expression levels of X-encoded genes in female XX and male XY cells. In mice, the X chromosomes in female cells go through sequential steps of inactivation and reactivation. Depending on the developmental time window, imprinted or random X chromosome inactivation (XCI) is initiated, and both processes lead to an inactive X chromosome that is clonally inherited. Here, we review new insights into the life cycle of XCI and provide an overview of the mechanisms regulating X inactivation and reactivation.  相似文献   

17.
Most females have random X-chromosome inactivation (XCI), defined as an equal likelihood for inactivation of the maternally- or paternally-derived X chromosome in each cell. Several X-linked disorders have been associated with a higher prevalence of non-random XCI patterns, but previous studies on XCI patterns in Aicardi syndrome were limited by small numbers and older methodologies, and have yielded conflicting results. We studied XCI patterns in DNA extracted from peripheral blood leukocytes of 35 girls with typical Aicardi syndrome (AIC) from 0.25 to 16.42 years of age, using the human androgen receptor assay. Data on 33 informative samples showed non-random XCI in 11 (33%), defined as a >80:20% skewed ratio of one versus the other X chromosome being active. In six (18%) of these, there was a >95:5% extremely skewed ratio of one versus the other X chromosome being active. XCI patterns on maternal samples were not excessively skewed. The prevalence of non-random XCI in Aicardi syndrome is significantly different from that in the general population (p < 0.0001) and provides additional support for the hypothesis that Aicardi syndrome is an X-linked disorder. We also investigated the correlation between X-inactivation patterns and clinical severity and found that non-random XCI is associated with a high neurological composite severity score. Conversely, a statistically significant association was found between random XCI and the skeletal composite score. Correlations between X-inactivation patterns and individual features were made and we found a significant association between vertebral anomalies and random XCI.  相似文献   

18.
19.
20.
The pattern of X chromosome inactivation in X autosome translocation carries in a herd of Limousin-Jersey crossbred cattle was studied using the reverse banding technique consisting of 5-bromodeoxyuridine incorporation and acridine orange staining and autoradiography on cultures of solid tissues and blood samples exposed to tritiated thymidine. The late-replicating X chromosome was noted to be the normal X in strikingly high proportions of cells in cultures of different tissues from all translocation carriers. It is suggested that the predominance of cells in which the normal X is inactivated may be the result of a post-inactivation selection process. Such a selection process during the prenatal life favouring cells in which the genes of the normal X chromosome remain unexpressed in translocation carrier females may be the mechanism that helps these conceptuses escape the adverse effects of functional aneuploidy. Based on the observation that the translocation carriers of this line of cattle are exclusively females and that there is a higher than expected rate of pregnancy loss, it is also postulated that the altered X chromosome may be lethal to all male conceptuses and to some of their female counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号