首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunofluorescence study of the extracellular matrix of the human placenta   总被引:1,自引:0,他引:1  
Distribution of collagen types I, III, IV, V and fibronectin in human placental villi has been studied by indirect immunofluorescence. During 9-12 weeks of pregnancy the extracellular matrix of villi represents a network of filaments organized in bundles and aggregates that contain collagen types I and III and finer filaments of collagen types IV and V. Collagen type IV is regularly detected in basal membrane of capillaries and particularly in villous epithelium, collagen type V and fibronectin are occasionally detected there. Marked immunofluorescent reaction on collagen types IV and V and fibronectin, and weak reaction on collagen type III is observed in cellular islets around cytotrophoblasts. In the fetus born in term placental villi have uniform immunofluorescence in thick basal membranes of fetal capillaries and of chorionic epithelium. The immunofluorescent reaction specific for all collagen types is uniform in villous stroma. Distribution of different collagen types and fibronectin, including the unusual localization of membrane collagen type IV, in villous stroma and cellular islets of early and mature placenta is discussed.  相似文献   

2.
The organization of type IV collagen in the unconventional basement membrane of the corneal endothelium (Descemet's membrane) was investigated in developing chicken embryos using anti-collagen mAbs. Both immunofluorescence histochemistry and immunoelectron microscopy were performed. In mature embryos (greater than 15 d of development), the type IV collagen of Descemet's membrane was present as an array of discrete aggregates of amorphous material at the interface between Descemet's membrane and the posterior corneal stroma. Immunoreactivity for type IV collagen was also observed in the posterior corneal stroma as irregular plaques of material with a morphology similar to that of the Descemet's membrane-associated aggregates. This arrangement of Descemet's membrane-associated type IV collagen developed from a subendothelial mat of type IV collagen-containing material. This mat, in which type IV collagen-specific immunoreactivity was always discontinuous, first appeared at the time a confluent endothelium was established, well before the onset of Descemet's membrane formation. Immunoelectron microscopy of mature corneas revealed that the characteristic nodal matrix of Descemet's membrane itself was unreactive for type IV collagen, but was penetrated at intervals by projections of type IV collagen-containing material. These projections frequently appeared to contact cell processes from the underlying corneal endothelium. This spatial arrangement of type IV collagen suggests that it serves to suture the corneal endothelium/Descemet's membrane to the dense interfacial matrix of the posterior stroma.  相似文献   

3.
Changes of expression of contractile proteins (smooth muscle cell α-actin and myosin) and of type IV collagen in villous stroma of human placenta were studied at the diagnosed placental insufficiency (PI) in III trimester of pregnancy. The study revealed pronounced disturbances of expression of contractile proteins and type IV collagen at PI. It is shown that in perivascular sheaths of vessels of stem and intermediate villi there is present a much greater amount of cells expressing smooth muscle actin and myosin. These cells are arranged by the denser concentric layers and more compactly than in norm and fill the intervascular space inside the villi. The width of perivascular sheaths of vessels is higher, while vascular lumens are lower than in norm. In terminal villi the capillary walls are thickened and the number of pericytes immunopositive against the smooth muscle cell α-actin and myosin as well as type IV collagen is increased. The change of synthesis of the cytoskeletal contractile proteins and type IV collagen is shown to lead to structural disturbances of villi of different types and of perivascular areas and vessels, which doubtlessly indicates their participation in pathogenesis of placental dysfunction and of disturbance of placental hemodynamics.  相似文献   

4.
Various collagens were extracted and purified from human placenta after partial pepsin digestion. We prepared type III + I (57:43), enriched type I, type III, and type IV collagens on an industrial level, and studied their biological properties with MRC5 fibroblast cells. Using the process of contraction of a hydrated collagen lattice described by Bell, we found tha the contraction rate was dependent on collagen type composition. The contraction was faster and more pronounced with pepsinized type I collagen than with pepsinized type III + I (57:43) collagen; the lowest rate was obtained with the pepsinized type III collagen. Using a new technique of collagen cross-linking, a gel was made with type IV collagen. This cross-linking procedure, based on partial oxidation of sugar residues and hydroxylysine by periodic acid, followed by neutralization, resulted in an increased number of natural cross-link bridges between oxidized and nonoxidized collagen molecules, without internal toxic residues. The fibroblasts were unable to contract type IV/IVox collagen gels. The type IV/IVox collagen gel was transparent and its amorphous ultrastructure lacked any visible striated fibrils. Fibroblast cells exhibited atypical behavior in these type IV/IVox collagen gels as evidenced by optical and electron microscopy. The penetration of fibroblasts could be measured. Fibroblasts penetrated faster in type IV/IVox collagen gels than in untreated type III + I collagen gels. The lowest rate of penetration was obtained with cross-linked type III + I gels. Fibroblast proliferation was similar on untreated or cross-linked type III + I collagen gels and slightly increased on type IV/IVox collagen gels, suggesting that this cross-linking procedure was not toxic.  相似文献   

5.
The distribution of type I, II, III, IV, V and VI collagens in 20 cases of osteosarcoma was demonstrated immunohistochemically using monospecific antibodies to different collagen types. In addition, biochemical analysis was made on collagenous proteins synthesized by tumor cells in short-term cultures obtained from seven representative cases and compared with dermal fibroblasts. In osteoblastic areas, most of the tumor osteoid consisted exclusively of type I collagen. Type V collagen was associated in some of them. Type III and type VI collagens were mainly localized in the perivascular fibrous stroma. Cultured tumor cells from osteoblastic osteosarcomas produced type I collagen exclusively and small amount of type V collagen constantly, while the synthetic activity of type III collagen was extremely low. In contrast, fibroblastic areas were characterized by the codistribution of type I, III, VI collagens and chondroblastic areas by type I, V, VI collagens as well as type II. Furthermore, type IV collagen was demonstrated in the stroma, other than the basement membrane region of blood vessels, in fibroblastic, intramedullary well-differentiated and telangiectatic osteosarcomas. In vitro, the production of variable amounts of type IV collagen, which was not detected in cultured dermal fibroblasts, was also recognized in the osteoblastic, fibroblastic, undifferentiated and intramedullary well-differentiated osteosarcomas examined. These findings suggest that the immunohistochemical approach using monospecific antibodies to different collagen types is useful not only in identifying some specific organoid components, such as tumor osteoid, but also in disclosing the biological properties of osteosarcoma cells with diverse differentiation.  相似文献   

6.
An enzymatic assay is described which quantitates radiolabeled type IV basement membrane collagen in the presence of large amounts of other proteins. A partially purified neutral protease is used which cleaves type IV collagen into fragments at 37°C which are not precipitated at 1.3% (final concentration) trichloroacetic acid-tannic acid. The kinetics of type IV collagen digestion by this enzyme are not significantly altered by the presence of a 10-fold excess of type III collagen. [14C]Tryptophan-labeled control proteins prepared from fibroblast cultures are not degraded significantly by this protease in the presence of 2.5 mmN-ethylmaleimide. The proportion of type IV collagen in a mixture of labeled placenta collagenous proteins was calculated after separate digestions with the type IV collagenolytic activity and bacterial collagenase: this value compared favorably with the proportion of type IV collagen estimated by gel electrophoresis.  相似文献   

7.
Human type III collagen from placenta was isolated and purified for use as an immunogen. A monoclonal antibody was produced which specifically recognizes epitopes unique to type III collagen. The specificity of the antibody was determined by inhibition ELISA, an immunoblot assay, and by immunoprecipitation. Results indicated that the monoclonal antibody recognized only the alpha 1(III) polypeptide chains and did not crossreact with type I, IV, or V collagen. The monoclonal antibody was also used for immunohistochemical localization of type III collagen in tissue sections of human placenta, bovine spleen, and lymph node. In placenta, both large and small blood vessels showed pronounced staining of the tunica media, which contains largely smooth muscle cells, known to synthesize type III collagen. In contrast, the intimal areas and endothelial cells showed no staining with the antibody. In the placental villi, staining was limited to the villous core, where fine fibrillar structures showed strong staining. In lymph nodes, the capsule and pericapsular adipose cells were surrounded by a covering of type III collagen. Within the parenchyma of the node, staining was localized to a branching, reticular array of fine fibers. In the spleen, staining was pronounced in the capsule, splenic trabeculae, and white pulp, where blood vessel staining was especially prominent. The red pulp and splenic sinuses contain little or no type III collagen. The fine network-like or reticular staining pattern found in the lymph node parenchyma is consistent with the staining pattern of the protein reticulin, and suggests that type III collagen may be closely associated with reticulin in certain tissues. Since the role of type III in tissues is unclear, this reagent will be useful in providing new information in this regard.  相似文献   

8.
Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cells at Hamburger-Hamilton stages 20--30 but not in the stroma at any age. Intact corneas from embryos older than stage 30 contain and synthesize type I collagen but no detectable type III collagen. However, whole stromata subjected to collagenase treatment and scraping (to remove epithelium and endothelium) and stromal fibroblasts from such corneas inoculated in vitro begin synthesis of type III collagen within a few hours while continuing to synthesize type I collagen. As demonstrated by double-antibody staining, most corneal fibroblasts contain collagen types I and III simultaneously. Collagen type III was identified biochemically in cell layers and media after chromatography on carboxymethylcellulose be detection of disulfide-linked alpha l (III)3 by SDS gel electrophoresis. The conditions under which the corneal fibroblasts gain the ability to synthesize type III collagen are the same as those under which they lose the ability to synthesize the specific proteoglycan of the cornea: the presence of corneal-type keratan sulfate.  相似文献   

9.
The appearance and distribution of type I, II, and III collagens in the developing chick eye were studied by specific antibodies and indirect immunofluorescence. At stage 19, only type I collagen was detected in the primary corneal stroma, in the vitreous body, and along the lens surface. At later stages, type I collagen was located in the primary and secondary corneal stroma and in the fibrous sclera, but not around the lens. Type II collagen was first observed at stage 20 in the primary corneal stroma, neural retina, and vitreous body. It was particularly prominent at the interface of the neural retina and vitreous body and, from stage 30 on, in the cartilaginous sclera. The primary corneal stroma consisted of a mixture of type I and II collagens between stages 20 and 27. Invasion of the primary corneal stroma by mesenchyme and subsequent deposition of fibroblast-derived collagen corresponded with a pronounced increase of type I collagen, throughout the entire stroma, and of type II collagen, in the subepithelial region. Type II collagen was also found in Bowman's and Descemet's membranes. A transient appearance of type III collagen was observed in the corneal epithelial cells, but not in the stroma (stages 20–30). The fully developed cornea contained both type I and II collagens, but no type III collagen. Type III collagen was prominent in the fibrous sclera, iris, nictitating membrane, and eyelids.  相似文献   

10.
The morphogenesis of type IV collagen-containing structures in the stromal matrix of the developing avian cornea was investigated using immunofluorescence and immunoelectron microscopic histochemistry. Two forms of type IV collagen-containing structures were seen; these differed in their probable origin, structure, molecular composition, and developmental fate. The major form of stromal type IV collagen-containing material, termed "strings," was observed only after swelling of the primary stroma and the onset of mesenchymal invasion. These strings are presumed to be products of the stromal cells. In immunofluorescence histochemistry they appeared as linear segments of type IV collagen-specific immunoreactivity. In immunoelectron microscopy, they appeared initially as electron-dense sausages of variable length and orientation. They frequently were associated with cell surfaces and, in fortuitous sections, appeared to connect adjacent cells. The strings also contained type VI collagen and fibronectin, but very little, if any, of the basement membrane components laminin and heparin sulfate proteoglycan (HSPG). As the stroma continued to expand in thickness, more of these structures were observed in a radial orientation, becoming quite long and less tortuous. Later in development, as stromal condensation proceeded, they disappeared. We suggest that the strings function to stabilize the stromal matrix, and perhaps to limit the rate and/or extent of stromal expansion, during a phase of rapid swelling and matrix deposition. The other form of type IV collagen-containing stromal material appeared as irregularly shaped plaques of basement membrane-like material identical to those previously described in mature corneas. These are likely derived from the corneal endothelial cells. They contained other basement membrane-associated components (laminin, HSPG) and fibronectin, but not type VI collagen. This material persists in mature corneas as sparse irregular stromal plaques and as matrix in the interface between Descemet's membrane and the corneal stroma.  相似文献   

11.
In vivo mammary epithelial cells rest upon a basement membrane composed in part of type IV collagen which is synthesized by these cells. In this study, basement membrane collagen is shown to be selectively recognized by normal mammary ducts and alveoli for attachment and growth when compared to the types of collagen derived from stroma (types I or III) or cartilage (type II). Cell attachment and growth on type I collagen is inhibited by the proline analogue, cis-hydroxyproline, which blocks normal collagen production. These effects of cis-hydroxyproline are not apparent when a basement membrane collagen substratum is provided. Unlike normal mammary epithelium, mammary fibroblasts show little preference for the collagen to which they will attach. A requirement of type IV collagen synthesis for normal mammary epithelial cell attachment and growth on stromal collagen in vitro may have significance in vivo where a basement membrane scaffold may be necessary for normal mammary morphogenesis and growth.  相似文献   

12.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

13.
In the past it has been proven difficult to separate and characterize collagen from muscle because of its relative paucity in this tissue. The present report presents a comprehensive methodology, combining methods previously described by McCollester [(1962) Biochim. Biophys. Acta 57, 427-437] and Laurent, Cockerill, McAnulty & Hastings [(1981) Anal. Biochem. 113, 301-312], in which the three major tracts of muscle connective tissue, the epimysium, perimysium and endomysium, may be prepared and separated from the bulk of muscle protein. Connective tissue thus prepared may be washed with salt and treated with pepsin to liberate soluble native collagen, or can be washed with sodium dodecyl sulphate to produce a very clean insoluble collagenous product. This latter type of preparation may be used for quantification of the ratio of the major genetic forms of collagen or for measurement of reducible cross-link content to give reproducible results. It was shown that both the epimysium and perimysium contain type I collagen as the major component and type III collagen as a minor component; perimysium also contained traces of type V collagen. The endomysium, the sheaths of individual muscle fibres, was shown to contain both type I and type III collagen as major components. Type V collagen was also present in small amounts, and type IV collagen, the collagenous component of basement membranes, was purified from endomysial preparations. This is the first biochemical demonstration of the presence of type IV collagen in muscle endomysium. The preparation was shown to be very similar to other type IV collagens from other basement membranes on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and was indistinguishable from EHS sarcoma collagen and placenta type IV collagen in the electron microscope after rotary shadowing.  相似文献   

14.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

15.
Glucose-6-phosphate residues were revealed by fine structural analysis using glucose-6-phosphate dehydrogenase-gold conjugate. In human mature placenta specific staining was detected over the stroma of placental villi. Colloidal gold particles were found over the collagen fibrils and reticular lamina of basal membrane. Syncytiotrophoblast cells, fibroblasts, endothelial cells of fetal capillaries avoided labelling. Nucleated blood cells and thrombocytes inside the lumen of fetal capillaries demonstrated intense staining. The present investigation demonstrates histochemically the process of extracellular glycosylation. Glycated collagen fibrils formed channels inside the stroma of placental villi.  相似文献   

16.
Immunolocalisation of type XIV collagen/undulin in the human mammary gland revealed greater deposition in the interlobular stroma than in the intralobular stroma. The interlobular stroma is located between the breast lobules and their associated intralobular stroma. Fibroblasts isolated from the interlobular stroma synthesised 3- to 5-fold more type XIV collagen/undulin than intralobular fibroblasts, but synthesised type I and type IV collagens in similar amounts. The differential expression of type XIV collagen/undulin was maintained with passage in culture. The results suggest a role for type XIV collagen/undulin in stabilising dense collagen fibrils. The maintenance of two types of structurally distinct stromas may be important during developmental processes in the mammary gland.  相似文献   

17.
The collagenous components were investigated in peptic digests of developing bovine nuchal ligament. Types I and III collagen were the major species isolated, but the presence of types IV, V and VI was also shown. Changes in the pepsin-susceptibility of nuchal ligament during foetal development were observed. CNBr-cleavage peptide analysis indicated that type I collagen became cross-linked rapidly, as evidenced by the lack of alpha 1(I)CB6. At present it is not clear if this decrease in pepsin-susceptibility is due to cross-linking of collagen, to increased deposition of elastin, or to both. Quantification of collagen types I and III was shown to depend on the method used. When pepsin-solubilized material was examined an apparent increase in type III collagen with respect to foetal age was observed, whereas when CNBr digests of intact ligament were examined a relatively constant amount of type III collagen (approx. 24%) was found. The constant amount of type III collagen observed during foetal development changed at birth and increased in mature nuchal ligament to represent approx. 45% of the total collagen.  相似文献   

18.
Previous investigations from our laboratory and others have demonstrated that type II collagen, once thought to be a cartilage-specific molecule, is also a component of both the primary corneal stroma and the vitreous of embryonic chickens. In the present immunohistochemical study we have examined the expression in these embryonic matrices of another "cartilage-specific" collagen, type IX, along with type II. In the cornea, type IX collagen is in the primary stroma, but is not detectable in the mature, secondary stroma. Even within the primary stroma this collagen has a brief, transitory existence. It first appears in the peripheral stroma at the time the endothelial cells begin to migrate along its posterior surface, and spreads throughout the stroma during the following 24-36 hr. The epitopes on type IX collagen then suddenly become undetectable just before this matrix swells and becomes populated by the periocular mesenchymal cells (future keratocytes). In comparison, collagen type II (along with type I) is present in the stroma before and long after these events. Deposition of immunodetectable type IX collagen in the developing corneal stroma thus seems to be independent of type II. In the vitreous, we observed type IX collagen along with type II as soon as authentic vitreous could be identified and at all subsequent stages of development. In this tissue, therefore, the expression of collagen types IX and II appears to be coordinate.  相似文献   

19.
We have produced four monoclonal antibodies against type IV collagen obtained from human placenta. An antibody with a high titer by ELISA, named JK-199, reacted not only with type IV collagen in the triple-helical conformation but also with thermally denatured chains. After affinity chromatography on JK-199 antibody-coupled resin, the amino acid composition and CD spectrum of the affinity-purified peptides from the crude pepsin extract of human placenta were typical of those of human type IV collagen in the triple-helical conformation. On SDS-polyacrylamide gel electrophoresis, the purified protein showed only one broad band with a molecular weight of approximately 260,000 before reduction and six smaller peptide bands after reduction. On immunoelectroblotting, JK-199 reacted with all six peptide bands. Immunohistochemically, typical basement membranes were exclusively and strongly stained with JK-199 on frozen sections of PLP-fixed human placentas without any enzymatic pretreatment in the routine immunoperoxidase method. Judging from these findings, it is concluded that the epitopes of type IV collagen that reacted with JK-199 are exposed on the surface of basement membranes. This antibody should be useful for identification of type IV collagen in normal or pathological basement membranes or other structures.  相似文献   

20.
Cross-linking in type IV collagen.   总被引:1,自引:1,他引:0       下载免费PDF全文
Type IV collagen could not be extracted from human placenta using 6M-urea containing 10mM-dithiothreitol, indicating that the type IV molecule is stabilized within the basement membrane by covalent cross-links. However, various forms of type IV collagen molecule were extractable by means of increasingly severe proteolytic conditions. Type IV collagen tetramers ('spiders') lacking only the C-terminal globular region (NC1) were further digested to the 'long-form' 7S fragment and an assortment of helical rod-like molecules derived from the 'leg' region. These molecules were separated by salt fractionation and examined by rotary-shadowing electron microscopy. Isolation of these fractions from placenta which had been reduced with NaB3H4 revealed that both the 7S (N-terminal) and C-terminal regions contained significant proportions of reducible lysine-derived cross-links. These cross-links were shown to be exclusively the stable oxo-imine hydroxylysino-5-oxonorleucine. The number of the cross-links per molecule was significantly lower than might be expected in order to fully stabilize the molecule. These results suggest that the keto-imine cross-links in type IV collagen have been stabilized in part by conversion into an unknown non-reducible form, although a sensitive immunoassay failed to show the presence of any pyridinoline. Comparison with the fibrous collagen from placenta suggested that the rate of this conversion is much greater in basement-membrane collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号