首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lipids seem to have various roles in cellular senescence. We found that cardiolipin very sensitively inhibits growth of normal human fibroblasts, whereas other phospholipids do not at 100 times higher concentrations. Growth arrested cells showed morphology similar to those of normally senesced cells and strongly induced senescence-associated beta-galactosidase. Senescence markers such as the p21(waf1/sdi-1), fibronectin, and collagenase-I genes were significantly upregulated by cardiolipin. In addition, caldiolipin significantly increased in normally senesced human fibroblasts leaving other phospholipids unaltered. These results suggest that accumulation of cardiolipin is one of the causes for replicative senescence.  相似文献   

3.
Kang HT  Lee KB  Kim SY  Choi HR  Park SC 《PloS one》2011,6(8):e23367

Background

Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells.

Methodology/Principal Findings

Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated β-galactosidase (SA-β-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-α or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways.

Conclusion

Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts.  相似文献   

4.
Aging appears to decrease delta6-desaturase activity in males, but in females it is uncertain. delta6- and delta5-desaturase functions were investigated in pre- and post-menopausal women who were normoglycemic or had type 2 diabetes (2 x 2 factorial, n = 37). Subjects were compared for indicators of diabetic control, estrogen levels, fatty acid profiles and indices of delta6- and delta5-desaturase activity. Diet intakes that were compared to determine whether results were a function of dietary factors known to influence desaturase activity revealed no differences (P>0.05). Post-menopausal women with type 2 diabetes had more 18:2 n6 in serum phospholipids (P<0.05) than did the pre- and post-menopausal control subjects. Fatty acid ratios of 18:3 n6/18:2 n6 indicated greater delta6-desaturase activity for women with type 2 diabetes, but differences were not found between pre- and post-menopausal groups. Significant correlation (P < 0.05) indicates an association between diabetic status and desaturase function, but function did not appear to be affected by menopausal status. In contrast to reports using male subjects, we found no evidence that desaturase function decreased in aging females, as reported for males, or increased as hypothesized in this study.  相似文献   

5.
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric DNA-binding complex of the subunits alpha and beta with relevance in O(2) and energy homeostasis. The labile component, HIF-1alpha, is not only activated by hypoxia but also by peptides such as insulin and interleukin-1 (IL-1) in normoxia. We investigated whether inhibitors of mitogen-activated protein kinase kinases (MAPKKs: PD 98059, U0126) and phosphatidylinositol 3-kinase (PI3K: LY 294002) do not only lower the hypoxia-induced, but also the insulin- and IL-1-induced HIF-1alpha accumulation and HIF-1 DNA-binding in human hepatoma cell cultures (line HepG2). The results show that LY 294002 suppressed HIF-1 activation in a dose-dependent manner irrespective of the stimulus. With respect to target proteins controlled by HIF-1, the production of erythropoietin was fully blocked and that of vascular endothelial growth factor reduced following inhibition of the PI3K pathway. The role of MAPKKs in this process remained in question, because PD 98059 and U0126 did not significantly reduce HIF-1alpha levels at non-toxic doses. We propose that PI3K signaling is not only important in the hypoxic induction of HIF-1 but it is also crucially involved in the response to insulin and IL-1.  相似文献   

6.
Thioredoxin (TRX) is a ubiquitous multifunctional thiol protein that is critically involved in maintaining cellular redox homeostasis. Levels of thioredoxin-1 (TRX1), the major isoform of TRX, have been shown to correlate with organismal lifespan and age-associated tissue deterioration. Accordingly, we investigated the direct functional effects of suppressing TRX1 levels on cellular senescence, a phenomenon intimately linked with tissue degeneration and aging. Here we find that suppression of TRX1 expression via shRNA rapidly induces premature senescence in young human skin fibroblasts through upregulation of the p53/p21Cip1/Waf1 and p16INK4a tumor suppressor pathways. Moreover, inhibition of these pathways by introduction of SV40 Large T Antigen prevents TRX1 suppression-induced premature senescence but not susceptibility to oxidative stressors. Thus our results suggest that TRX1 has a role in suppressing senescence in normal cells in addition to its function as a redox-protective protein.  相似文献   

7.
Actuarial senescence is characterized by an increase in mortality rate with increasing chronological age. The reliability theory of senescence proposes that organisms’ vital functions can be modelled as a suite of damageable, irreplaceable elements (typically genes or their products) that protect their bearer from condition-dependent death so long as at least one of the elements remains intact. Current incarnations of the reliability theory of senescence are continuous-time models with no explicit evolutionary component. Here, we use elementary probability theory and evolutionary dynamics analysis to derive a discrete-time version of the reliability theory of senescence. We include three variations on this theme: the ‘Series’ model in which damage to any of n elements results in death, the ‘Parallel’ model, in which damage accumulates in random order and damage to all n elements results in death, and the ‘Cascade’ (multi-stage) model, which is like the Parallel model, except the irreparable damage necessarily follows a strict sequence. For simplicity, we refer to the state of having multiple elements as ‘redundancy’, but this does not imply that the elements are necessarily identical. We show that redundancy leads to actuarial senescence in the Parallel and Cascade models but not in the Series model. We further demonstrate that in the Parallel and Cascade models, lifetime reproductive output (a potential proxy for fitness in populations with discrete generations) is a positive but decelerating function of redundancy. The positive nature of the fitness function leads to the prediction that redundancy and senescence should evolve from non-redundant, non-senescing ancestral populations; however, the deceleration of the fitness function leads to the prediction that this evolution towards increased redundancy will eventually be limited by mutation-selection balance. Using evolutionary dynamics analysis involving the discrete-generation quasispecies equation, we confirm these two predictions. Finally, we show that a population's equilibrium redundancy is sensitive to the environmental conditions that prevailed during its evolution, such as the rate of extrinsic mortality.  相似文献   

8.

Introduction  

Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.  相似文献   

9.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

10.
We evaluated the cytotoxicity of surfactants in human cells. Synthetic surfactants showed different cytotoxicity levels depending on their structures. The cytotoxicity of commercial washing products was determined mainly by the contents of surfactants. All of them induced premature senescence in normal cells, but not in tumor-derived or immortalized cells, under sublethal conditions. Residual surfactants might be a risk factor for skin aging.  相似文献   

11.
Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.  相似文献   

12.
From an ultimate perspective, the age of onset of female reproduction should be sensitive to variation in mortality rates, and variation in the productivity of non-reproductive activities. In accordance with this prediction, most of the cross-national variation in women's age at first birth can be explained by differences in female life expectancies and incomes. The within-country variation in England shows a similar pattern: women have children younger in neighbourhoods where the expectation of healthy life is shorter and incomes are lower. I consider the proximate mechanisms likely to be involved in producing locally appropriate reproductive decisions. There is evidence suggesting that developmental induction, social learning and contextual evocation may all play a role.  相似文献   

13.
Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level of protein expression, stress-induced premature senescence and replicative senescence are different phenotypes sharing however similarities. In this study, we identified 30 proteins showing changes of expression level specific or common to replicative senescence and/or stress-induced premature senescence. These changes affect different cell functions, including energy metabolism, defense systems, maintenance of the redox potential, cell morphology and transduction pathways.  相似文献   

14.
15.
The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.  相似文献   

16.
The evolution of reproductive systems in pinnipeds   总被引:1,自引:2,他引:1  
  相似文献   

17.
The temporal pattern of breeding in populations is often characterized by a pronounced temporal clustering of births, flowering or seed set. It has long been suspected that this phenomenon is not caused by climatic seasonality alone but that reproductive synchrony represents a strategy that individuals adopt to maximize reproductive success. The classical hypotheses predicting an adaptive advantage of reproductive synchrony incorporate both sociobiological and ecological explanations. However, new theoretical and empirical analyses have shown that the predicted advantage of reproductive synchrony depends on the ecological setting in which populations reproduce, and processes earlier thought to be responsible only for synchrony may under some ecological conditions lead to asynchronous reproduction being the best strategy.  相似文献   

18.
19.
Aging is a developmental process occurring in all living organisms after reaching a critical developmental stage, characterized by progressive loss of functions until death. Different cells/tissues age differently depending on epigenetics and cell-cell interactions. While males maintain fertility for the most part of their life females only maintain reproductive ability for a short time compared with their lifespan. The interesting question is why and how the females lose fertility so quickly. There have been many hypotheses proposed from different perspectives and recent research has revealed unusual interactions between germ cells and somatic cells which may determine the lifespan of reproduction in the females. This review briefly discusses recent progress in reproductive aging in the well studied model, C. elegans, and focuses on the molecular mechanisms which may be conserved across all animals including humans.  相似文献   

20.
The evolution of senescence from a comparative perspective   总被引:3,自引:3,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号