首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane properties and the synaptic interactions of individual neurons, as well as the interactions between neuronal networks, all contribute to the formation of the complex patterns of activity that underlie rhythmic motor patterns and slow-wave sleep rhythms. These properties and interactions are potential points of modulation for further refining network output. Recent work illustrates the range of these properties and interactions and suggests how they may be modulated.  相似文献   

2.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

3.
The effects of a variety of neuromodulator substances on rhythmic motor output and activity in neurons in the feeding circuitry of Lymnaea stagnalis were examined. Each neuromodulator produced a unique combination of effects at different levels in the network: i.e., pattern-generating interneurons (N1, N2, and N3), an identified higher-order interneuron (cerebral giant cell, CGC), and buccal motoneurons. 5-Hydroxytryptamine, acetylcholine, and FMRFamide all inhibited rhythmic motor activity. However, this was achieved in different ways. Dopamine changed the nature of rhythmic activity from one in which N2 interneuronal activity was predominant ("N2 rhythm") to a feeding rhythm. Dopamine was the only substance capable of activating the feeding rhythm. Activity in the CGC was increased by 5-hydroxytryptamine, dopamine, and acetylcholine and reduced by FMRFamide. Differential responses in buccal motoneurons were also observed. The results are discussed in relation to previous work on other species and also in terms of the selection of different patterns of motor output by neuromodulators.  相似文献   

4.
Crustacean motor pattern-generating networks have played central roles in understanding the cellular and network bases of rhythmic motor patterns for over half a century. We review here the four best investigated of these systems: the stomatogastric, ventilatory, cardiac, and swimmeret systems. Generally applicable observations arising from this work include (1) neurons with active, endogenous cell properties (endogenous bursting, postinhibitory rebound, plateau potentials), (2) nonhierarchical (distributed) network synaptic connectivity patterns characterized by high levels of inter-neuronal connections, (3) nonspiking neurons and graded transmitter release, (4) multiple modulatory inputs, (5) networks that produce multiple patterns and have flexible boundaries, and (6) peripheral properties (proprioceptive feedback loops, low-frequency muscle filtering) playing an important role in motor pattern generation or expression.  相似文献   

5.
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior‐specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state‐of‐the‐art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.  相似文献   

6.
Neuromodulatory inputs are known to play a major role in the adaptive plasticity of rhythmic neural networks in adult animals. Using the crustacean stomatogastric nervous system, we have investigated the role of modulatory inputs in the development of rhythmic neural networks. We found that the same neuronal population is organised into a single network in the embryo, as opposed to the two networks present in the adult. However, these adult networks pre-exist in the embryo and can be unmasked by specific alterations of the neuromodulatory environment. Similarly, adult networks may switch back to the embryonic phenotype by manipulating neuromodulatory inputs. During development, we found that the early established neuromodulatory population display alteration in expressed neurotransmitter phenotypes, and that although the population of modulatory neurones is established early, with morphology and projection pattern similar to adult ones, their neurotransmitter phenotype may appear gradually. Therefore the abrupt switch from embryonic to adult network expression occurring at metamorphosis may be due to network reconfiguration in response to changes in modulatory input, as found in adult adaptive plasticity. Strikingly, related crustacean species express different motor outputs using the same basic network circuitry, due to species-specific alteration in neuromodulatory substances within homologous projecting neurones. Therefore we propose that alterations within neuromodulatory systems to a given rhythmic neural network displaying the same basic circuitry may account for the generation of different motor outputs throughout development (ontogenetic plasticity), adulthood (adaptive plasticity) and evolution (phylogenetic plasticity).Abbreviations CoG Commissural ganglion - OG Oesophageal ganglion - STG Stomatogastric ganglion - STNS Stomatogastric nervous system  相似文献   

7.
Motor behaviors result from information processing that occurs in multiple neural networks acting at all levels from the initial selection of the behavior to its final generation. A long-standing research interest is how single neural networks can help generate different motor behaviors, that is, the origin of motor flexibility. Modern experimental techniques allow studying neural network activity during the production of multiple motor behaviors. Recent data provide strong evidence that the neural networks controlling insect legs are individually modified in task-dependent and finely tuned fashions. Understanding the mechanistic basis of these neural network modifications will be of particular interest in the upcoming years.  相似文献   

8.
Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have revealed that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation. Received: 10 July 1997 / Accepted in revised form: 13 March 1998  相似文献   

9.
1. Central pattern generators (CPGs) underlie a wide variety of rhythmic behaviours such as locomotion and respiration in most multi-cellular organisms. 2. The CPG's are capable of generating a patterned output without phasic sensory input. 3. The organization of the CPG is due to both intrinsic properties of the individual neurons and their network interactions. 4. To gain an understanding of the mechanisms which underlie rhythmicity a CPG has been reconstructed in culture. This will allow investigators to test directly the mechanisms underlying the generation of rhythmic output and will allow the direct testing of the mechanisms by which various modulators affect the CPG.  相似文献   

10.
There is growing recognition that rhythmic activity patterns are widespread in our brain and play an important role in all aspects of the functioning of our nervous system, from sensory integration to central processing and motor control. The study of the unique properties that enable central circuits to generate their rhythmic output in the absence of any patterned, sensory or descending, inputs, has been very rewarding in the relatively simple invertebrate preparations. The locust, specifically, is a remarkable example of an organism in which central pattern generator (CPG) networks have been suggested and studied in practically all aspects of their behaviour. Here we present an updated overview of the various rhythmic behaviours in the locust and aspects of their neural control. We focus on the fundamental concepts of multifunctional neuronal circuits, neural centre interactions and neuromodulation of CPG networks. We are certain that the very broad and solid knowledge base of locust rhythmic behaviour and pattern-generating circuits will continue to expand and further contribute to our understanding of the principles behind the functioning of the nervous system and, indeed, the brain.  相似文献   

11.
We report here the effects of temperature on the p1 neuromuscular system of the stomatogastric system of the lobster (Panulirus interruptus). Muscle force generation, in response to both the spontaneously rhythmic in vitro pyloric network neural activity and direct, controlled motor nerve stimulation, dramatically decreased as temperature increased, sufficiently that stomach movements would very unlikely be maintained at warm temperatures. However, animals fed in warm tanks showed statistically identical food digestion to those in cold tanks. Applying dopamine, a circulating hormone in crustacea, increased muscle force production at all temperatures and abolished neuromuscular system temperature dependence. Modulation may thus exist not only to increase the diversity of produced behaviors, but also to maintain individual behaviors when environmental conditions (such as temperature) vary.  相似文献   

12.
To what extent are motor networks underlying rhythmic behaviors rigidly hard-wired versus fluid and dynamic entities? Do the members of motor networks change from moment-to-moment or from motor program episode-to-episode? These are questions that can only be addressed in systems where it is possible to monitor the spiking activity of networks of neurons during the production of motor programs. We used large-scale voltage-sensitive dye (VSD) imaging followed by Independent Component Analysis spike-sorting to examine the extent to which the neuronal network underlying the escape swim behavior of Tritonia diomedea is hard-wired versus fluid from a moment-to-moment perspective. We found that while most neurons were dedicated to the swim network, a small but significant proportion of neurons participated in a surprisingly variable manner. These neurons joined the swim motor program late, left early, burst only on some cycles or skipped cycles of the motor program. We confirmed that this variable neuronal participation was not due to effects of the VSD by finding such neurons with intracellular recording in dye-free saline. Further, these neurons markedly varied their level of participation in the network from swim episode-to-episode. The generality of such unreliably bursting neurons was confirmed by their presence in the rhythmic escape networks of two other molluscan species, Tritonia festiva and Aplysia californica. Our observations support a view that neuronal networks, even those underlying rhythmic and stereotyped motor programs, may be more variable in structure than widely appreciated.  相似文献   

13.
Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.  相似文献   

14.
We used the lobster Homarus gammarus to study the ontogeny of neural networks involved in rhythmic behaviours. Since in the adult the neural networks belonging to the stomatogastric nervous system and controlling the rhythmic movements of the foregut are well characterised, we have studied them during ontogeny. While this foregut develops slowly throughout embryonic and larval stages, the neuronal population of these motor networks is quantitatively established since the mid-embryonic period. Moreover, in the embryo, this neural population is organised into a single functional network that displays a unique motor output. By contrast, in the adult the same neuronal elements are organised into three neural networks that express independent motor programs. Our results indicate that the multiple adult networks are partitioned progressively from a single embryonic network during development. Accepted: 23 May 1999  相似文献   

15.
Cyclic patterns of motor neuron activity are involved in the production of many rhythmic movements, such as walking, swimming, and scratching. These movements are controlled by neural circuits referred to as central pattern generators (CPGs). Some of these circuits function in the absence of both internal pacemakers and external feedback. We describe an associative neural network model whose dynamic behavior is similar to that of CPGs. The theory predicts the strength of all possible connections between pairs of neurons on the basis of the outputs of the CPG. It also allows the mean operating levels of the neurons to be deduced from the measured synaptic strengths between the pairs of neurons. We apply our theory to the CPG controlling escape swimming in the mollusk Tritonia diomedea. The basic rhythmic behavior is shown to be consistent with a simplified model that approximates neurons as threshold units and slow synaptic responses as elementary time delays. The model we describe may have relevance to other fixed action behaviors, as well as to the learning, recall, and recognition of temporally ordered information.  相似文献   

16.
The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances that have revealed the developmental and functional organization of these fundamental spinal motor networks in limbed and non-limbed animals. The comparison will highlight common principles and divergence in the organization of the spinal locomotor network structure in these different species as well as point to unresolved issues regarding the assembly and functioning of these networks.  相似文献   

17.
The locust frontal ganglion (FG) constitutes a major source of innervation to the foregut dilator muscles and thus plays a key role in control of foregut movements. This paper reviews our recent studies on the generation and characteristics of FG motor outputs in two distinct and fundamental locust behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all efferent nerves. Thus the FG motor pattern is generated by a central pattern generator within the ganglion. Intracellular recordings suggest that only a small fraction (10-20%) of the FG 100 neurons demonstrate rhythmic activity. The FG motor output in vivo was relatively complex, and strongly dependent on the locust's physiological and behavioral state. Rhythmic activity of the foregut was found to depend on the amount of food present in the crop; animals with full crop demonstrated higher FG burst frequency than those with empty crop. At the molt, the FG generates a distinct motor pattern that could be related to air-swallowing behavior.  相似文献   

18.
Although locust feeding has been well studied, our understanding of the neural basis of feeding-related motor patterns is still far from complete. This paper focuses on interactions between the pattern of rhythmic movements of the mouth appendages, governed by the suboesophageal ganglion (SOG), and the foregut movements, controlled by the frontal ganglion (FG), in the desert locust. In vitro simultaneous extracellular nerve recordings were made from totally isolated ganglia as well as from fully interconnected SOG-FG and brain-SOG-FG preparations. SOG-confined bath application of the nitric oxide donor, SNP, or the phosphodiesterase antagonist, IBMX, each followed by the muscarinic agonist pilocarpine, consistently induced robust fictive motor patterns in the SOG. This was observed in both isolated and interconnected preparations. In the brain-SOG-FG configuration the SOG-confined modulator application had an indirect excitatory effect on spontaneous FG rhythmic activity. Correlation between fictive motor patterns of the two ganglia was demonstrated by simultaneous changes in burst frequency. These interactions were found to be brain-mediated. Our results indicate the presence of intricate neuromodulation-mediated circuit interactions, even in the absence of sensory inputs. These interactions may be instrumental in generating the complex rhythmic motor patterns of the mandibles and gut muscles during locust feeding or ecdysis-related air swallowing.  相似文献   

19.
The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network.  相似文献   

20.
BACKGROUND: Rhythmic motor behaviors can be generated continuously (e.g., breathing) or episodically (e.g., locomotion, swallowing), when short or long bouts of rhythmic activity are interspersed with periods of quiescence. Although the mechanisms of rhythm generation are known in detail in many systems, there is very little understanding of how the episodic nature of rhythmic behavior is produced at the neuronal level. RESULTS: Using a well-established episodic rhythm-generating neural circuit controlling molluscan feeding, we demonstrate that quiescence between bouts of activity arises from active, maintained inhibition of an otherwise rhythmically active network. We show that the source of the suppressive drive is within the circuit itself; a single central pattern generator (CPG) interneuron type that fires tonically to inhibit feeding during quiescence. Suppression of the tonic activity of this neuron by food is sufficient to change the network from an inactive to a rhythmically active state, with the cell switching function to fire phasically as part of the food-evoked rhythmogenesis. Furthermore, the absolute level of intrinsic suppressive control is modulated extrinsically by the animal's behavioral state (e.g., hunger/satiety), increasing the probability of episodes of feeding when the animal is hungry. CONCLUSIONS: By utilizing the same intrinsic member of a CPG network in both rhythm-generation and suppression, this system has developed a simple and efficient mechanism for generating a variable level of response to suit the animal's changing behavioral demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号