首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Although studies have shown that peatland drainage andharvesting alter local hydrology, microclimate, and peatcharacteristics, little is known about the effects of these changes onCO2 production rates. This study examines the differentfactors affecting CO2 production from natural and cutoverpeatlands. Laboratory peat incubations were performed under aerobic andanaerobic conditions to determine the influence of temperature, soilmoisture, and peat depth on CO2 production rates from peatsamples taken from: (1) a natural peatland; (2) a 2-yearpost-cutover peatland and; (3) a 7-year post-cutover peatland.CO2 production rates ranged from 0.21 to 4.87 µmolg–1 d–1 under anaerobic conditions,and from 0.37 to 15.69 µmol g–1d–1 in the aerobic trials. While no significantdifferences were found between the CO2 production rates ofthe two cutover sites, the natural site consistently displayed higherproduction values. The natural site was also the only site to exhibitstrong depth dependent trends, thus indicating the importance of theupper peat layer with respect to substrate quality. Higher productionrates were found under aerobic than anaerobic conditions, with thegreatest response to oxygen observed at the natural site. Productionrates increased with both temperature and soil moisture, with maximumproduction rates found at 20 °C and 92% moisture content.Temperature responses were generally greater at the cutover sites, whilesoil moisture had greater effects on the natural site peat.Results of this work agree with previous studies that suggest that itis essential to begin restoration once a cutover peatland is abandoned.Re-wetting a cutover peatland (through restoration practices) isnecessary to prevent an increase in peat temperature and CO2production since cutover peat has higher Q10 values thannatural peat. A decrease in overall peatland oxidation should reduce thepersistent source of atmospheric CO2 from cutover peatlandsand the irreversible changes in peat structure that impedeSphagnum re-establishment.  相似文献   

2.
Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.  相似文献   

3.
张逸飞  刘小慧  杨平  黄佳芳  郭谦谦  仝川 《生态学报》2018,38(13):4715-4723
2015年12月—2016年10月,每月小潮日原位定期向闽江口塔礁洲淡水感潮野慈姑(Sagittaria trifolia L.)湿地施加剂量为60、120 kg S hm~(-2)a~(-1)的K_2SO_4溶液(分别记做S-60和S-120),探讨模拟硫酸根(SO_4~(2-))沉降对河口淡水感潮湿地甲烷(CH4)排放通量及间隙水SO_4~(2-)浓度的影响。对照、S-60和S-120处理组CH_4排放通量年均值分别为(7.88±1.00)mg h~(-1)m~(-2)、(6.55±0.97)mg h~(-1)m~(-2)和(6.66±1.49)mg h~(-1)m~(-2)。在年尺度上,两个高强度模拟SO_4~(2-)沉降处理组均未显著降低闽江口淡水感潮野慈姑湿地CH_4排放通量(P0.05),即高强度SO_4~(2-)沉降不会对河口淡水感潮湿地CH_4排放通量产生类似于其对泥炭湿地和水稻田的显著抑制效应。在年尺度以及秋、冬季,两个施加K_2SO_4溶液处理显著增加了野慈姑湿地10 cm深度土壤间隙水SO_4~(2-)浓度。对于各个处理组,温度较高的夏、秋季CH_4排放通量均显著高于温度相对较低的冬、春季(P0.05)。不同处理组CH_4排放通量均与土壤温度呈显著正相关关系,温度仍然是影响亚热带河口淡水感潮湿地CH_4排放通量的重要环境因子。  相似文献   

4.
5.
In high‐latitude regions, carbon dioxide (CO2) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot‐scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long‐term (2001–2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross‐seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.  相似文献   

6.
7.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

8.
Muylaert  Koenraad  Van Mieghem  Riet  Sabbe  Koen  Tackx  Micky  Vyverman  Wim 《Hydrobiologia》2000,432(1-3):25-36
Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability.  相似文献   

9.
张子川  杨平  仝川 《生态学报》2015,35(24):8075-8084
海平面上升导致河口区盐水入侵现象日益明显,深刻影响着河口潮汐淡水、微咸水湿地生物地球化学循环。采集闽江河口区淡水、微咸水短叶茳芏潮汐沼泽湿地表层土样,室内添加盐度为5,10,15,21 g/L的人造海水、Na Cl溶液及盐度为0的去离子水,通过室内泥浆厌氧培养试验,对比研究海水和Na Cl溶液对淡水、微咸水沼泽湿地土壤甲烷产生潜力的影响。与对照相比,1—12 d培养期内4个盐度的海水处理均显著抑制河口淡水、微咸水沼泽湿地甲烷产生潜力,抑制率在93%以上,盐度10—21 g/L的3个海水处理对于河口淡水、微咸水沼泽湿地甲烷产生潜力的抑制效应无显著差异。Na Cl溶液只有在盐度达到15和21 g/L才显著抑制淡水、微咸水沼泽湿地甲烷产生潜力,且抑制率最多为80.9%,盐度为5、10 g/L的Na Cl溶液对淡水、微咸水沼泽湿地甲烷产生潜力的抑制作用不显著,抑制率多小于30%。伴随着盐水入侵而发生的硫酸盐还原作用及离子胁迫作用对河口淡水、微咸水沼泽湿地甲烷产生具有显著的抑制效应。  相似文献   

10.
Sloey  Taylor M.  Hester  Mark W. 《Plant and Soil》2016,401(1-2):397-408
Plant and Soil - The success of tidal freshwater wetland restoration is typically gauged by the re-establishment of characteristics found in reference marshes. Although plant species composition...  相似文献   

11.
The effect of the partial pressure of O(2) and CO(2) on the acid protease production in solid state fermentation by Aspergillus niger on wheat bran was studied. A fermentation system was used, which allowed on-line reactor measurements and continuous data acquisition of pH, temperature, gas flow, pressure drop and CO(2) production. Six paired combinations of CO(2) and O(2) concentrations were studied. The results showed a direct relationship between pressure drop, production of CO(2) and temperature increase. The pH evolution patterns were similar in all cases but different if the measurements were made on-line or on a liquid homogenate of the fermented substrate. Acid protease production was increased when the gas had 4% CO(2), (vol/vol), and it reached its highest level, a 43% increase over air, with a mixture of 4% CO(2) and 21% O(2). The protease production was strongly related to the mold metabolic activity as represented by the total CO(2) evolved.  相似文献   

12.
Continued current emissions of carbon dioxide (CO2) and methane (CH4) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4. Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4. However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4. These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.  相似文献   

13.
14.
During the course of 1996, phytoplankton was monitored in the turbid, freshwater tidal reaches of the Schelde estuary. Using a simple light-limited primary production model, phytoplankton growth rates were estimated to evaluate whether phytoplankton could attain net positive growth rates and whether growth rates were high enough for a bloom to develop. Two phytoplankton blooms were observed in the freshwater tidal reaches. The first bloom occurred in March and was mainly situated in the most upstream reaches of the freshwater tidal zone, suggesting that it was imported from the tributary river Schelde. The second bloom occurred in July and August. This summer bloom was situated more downstream in the freshwater tidal reaches and appeared to have developed within the estuary. A comparison between phytoplankton growth rates estimated using a simple primary production model and flushing rate of the water indicated that no net increase in phytoplankton biomass was possible in March while phytoplankton could theoretically increase its biomass by 20% per day during summer. Chlorophyllaconcentrations at all times decreased strongly at salinities between 5–10 psu. This decline was ascribed to a combination of salinity stress and light limitation. Phytoplankton biomass and estimated annual net production were much higher in the freshwater tidal zone compared to the brackish reaches of the estuary (salinity > 10 psu) despite mixing depth to euphotic depth ratios being similar. Possible reasons for this high production include high nutrient concentrations, low zooplankton grazing pressure and import of phytoplankton blooms from the tributary rivers.  相似文献   

15.
曾志华  杨民和  佘晨兴  仝川 《生态学报》2014,34(10):2674-2681
为认识盐度对河口潮汐沼泽湿地土壤产甲烷菌的影响,应用PCR-RFLP技术及测序分析对闽江河口区淡水-半咸水盐度梯度上分布的4个短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构进行研究。闽江河口区短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构受盐度影响明显,位于下洋洲和塔礁洲的短叶茳芏潮汐淡水沼泽湿地土壤产甲烷菌的香农-威纳多样性指数值分别为2.81和2.65,位于蝙蝠洲和鳝鱼滩的短叶茳芏潮汐半咸水沼泽湿地土壤产甲烷菌香农-威纳多样性指数值分别仅为2.33和2.27。系统发育分析表明:短叶茳芏沼泽湿地土壤产甲烷菌类群主要有甲烷杆菌目(Methanobacteriales),包括Methanobacterium、Methanobrevibacter和Methanobacteriaceae;甲烷微菌目(Methanomicrobiales),主要有Methanoregula,以及甲烷八叠球菌目(Methanosarcinales),主要有Methanosarcina和Methanococcoides。闽江河口区短叶茳芏潮汐淡水沼泽湿地土壤主要的优势产甲烷菌有Methanoregula、Methanosarcina和Methanobacterium,而短叶茳芏潮汐半咸水沼泽湿地土壤主要的优势产甲烷菌则转化为仅以Methanoregula为主。  相似文献   

16.
17.
The hyperthermophilic anaerobe Pyrococcus furiosus was grown on maltose as energy and carbon source. During growth 1 mol maltose was fermented to 3–4 mol acetate, 6–7 mol H2 and 3–4 mol CO2. The presence of the following enzyme activities in cell extracts of maltose-grown P. furiosus indicate that the sugar is degraded to pyruvate and H2 by a modified non-phosphorylated Entner-Doudoroff-pathway (the values given in brackets are specific enzyme activities at 100 °C): Glucose: methyl viologen oxidoreductase (0.03 U/mg); 2-keto-3-deoxy-gluconate aldolase (0.03 U/mg); glyceraldehyde: benzyl viologen oxidoreductase (2.6 U/mg), glycerate kinase (2-phosphoglycerate forming) (0.48 U/mg), enolase (10.4 U/mg), pyruvate kinase (1.4 U/mg). Hexokinase, glucose-6-phosphate dehydrogenase, 2-keto-3-deoxy-6-phosphogluconate aldolase and phosphofructokinase could not be detected. Further conversion of pyruvate to acetate, CO2 and H2 involves pyruvate: ferredoxin oxidoreductase (0.4 U/mg; T=60°C with Clostridium pasteurianum ferredoxin as electron acceptor), hydrogen: methyl viologen ixodoreductase (3.4 U/mg) and ADP-dependent acetyl-CoA synthetase (1.9 U/mg). Phosphate acetyl transferase and acetate kinase could not be detected. The ADP-dependent acetyl-CoA synthetase catalyzes ATP synthesis via the mechanism of substrate level phosphorylation and apparently constitutes the only ATP conserving site during maltose catabolism in P. furiosus.This novel pathway of maltose fermentation to acetate, CO2 and H2 in the anaerobic archaeon P. furiosus may represent a phylogenetically ancient pathway of sugar fermentation.Non-standard abbreviations DTE dithioerythritol - MV methyl viologen - BV benzyl viologen - CHES cyclohexylamino-ethane sulfonic acid - ABTS 2,2-Azino-di-(3-ethylbenzthiazoliumsulfonate)  相似文献   

18.
The rapid increase in atmospheric CO2 concentrations (Ca) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca. Here we report data on annual sums of CO2 (NEEnet) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)‐ and Spartina patens (C4 photosynthetic pathway)‐dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEEnet = NEEday + NEEnight, kg C m?2 y?1) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEEnet averaged 1.9 kg m?2 y?1 in ambient Ca and 2.5 kg m?2 y?1 in elevated Ca, for the C3‐dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4‐dominated community, as NEEnet averaged 1.5 kg m?2 y?1 in ambient Ca and 1.7 kg m?2 y?1 in elevated Ca. This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEEnet for the C3‐ and C4‐dominated communities, respectively. Increased NEEday was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca, while decreased NEEnight was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3‐ and C4‐dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.  相似文献   

19.
Autonomous, in situ sensors for the partial pressure of CO2(pCO2) and dissolved oxygen (DO) were deployedin a freshwater lake during the winters of 1997 and 1998 to evaluate magnitudeand sources of variability during ice-covered periods. Gas variability ondiel or shorter time scales was small or undetectable during most of thedeployment periods, only becoming significant prior to ice-out whenrunoff and light penetration increased, promoting convective currents andbiological production. A surprising 7.6 d period oscillation,apparently driven by a baroclinic seiche, dominated the short-termvariability during the first year. The gas trends associated with the seicheoscillations and periodic profile measurements revealed that ice formation ledto gas gradients directly under the ice. Long-term variability wascharacterized by increasing CO2 and decreasing DO as a consequenceofbiological oxidation of organic matter. The results suggest that both spatialand temporal variability can be significant over intervals which would not beresolved by traditional sampling-based studies.  相似文献   

20.
丰水期长江感潮河口段网采浮游植物的分布与长期变化   总被引:1,自引:0,他引:1  
于2009年6、8月对长江口门至江阴的河口段浮游植物进行了拖网采集,共检出浮游植物6门99属239种。其中:硅藻123种,甲藻19种,绿藻和蓝藻各42种,裸藻9种,黄藻4种。河口段网采浮游植物丰度以蓝藻占绝对优势,硅藻次之,两者合计在群落中的比例超过了95%。优势种也主要以蓝藻(水华鱼腥藻Anabaena flos-aquae、柔软腔球藻Coelosphaerium kuetzingiarum、微囊藻Microcystis spp.、颤藻Oscillatoria spp.和席藻Phorimidium spp.)构成,硅藻仅有2种(骨条藻Skeletonema spp.和颗粒直链藻Aulacoseira granulata)。口门内盐度均<0.5,群落基本以淡水类群为主,口门附近则以半咸水类群为主,海水类群主要位于口门外(盐度>13)。随着水温和营养盐水平的升高,8月浮游植物平均丰度(347.75×104 个/m3)明显高于6月(204.19×104 个/m3)。根据多维尺度和相似性分析,丰水期长江河口段浮游植物群落组成与分布存在显著(P<0.01)的时空差异。对比20世纪80年代以来的历史资料发现,长江口门内网采浮游植物丰度显著升高,且优势种也从硅藻(骨条藻、直链藻和圆筛藻)转变为蓝藻(颤藻、鱼腥藻和微囊藻)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号