首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Despite the significant brain abnormalities, the neurotoxic mechanisms of brain injury in hypertryptophanemia are virtually unknown. In this work, it was investigated the in vitro effect of l-tryptophan on various parameters of oxidative stress, namely spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) and glutathione (GSH) levels in cerebral cortex from 30-day-old rats. Tryptophan significantly increased chemiluminescence and TBA-RS measurements indicating that this amino acid induced lipid peroxidation in vitro. We also observed that tryptophan significantly decreased the brain antioxidant defenses by reducing the values of TRAP, TAR and GSH, reflecting that the overall content of antioxidants was reduced by tryptophan. Furthermore, the tryptophan-induced increase of TBA-RS was fully prevented by GSH and by combination of catalase plus superoxide dismutase, but not by the inhibitor of nitric oxide synthase N(omega)-nitro-L-arginine methyl ester (L-NAME). In case these findings also occur in human hypertryptophanemia or in other neurodegenerative diseases in which tryptophan accumulates, it is feasible that oxidative stress may be involved in the mechanism leading to the brain injury observed in patients affected by these disorders.  相似文献   

2.
X-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegenerative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD.  相似文献   

3.
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.  相似文献   

4.
A genetic mice model of glutaric acidemia type I (GAI) has recently been developed, however affected animals do not develop the striatal damage characteristic of patients with this disorder. Therefore, the initial aim of the present work was to induce high glutaric acid (GA) concentrations in rat brain similar to those found in GAI patients through subcutaneous injection of GA. High brain GA concentrations (up to 0.60 μmol/g ≅ 0.60mM) were achieved by a single subcutaneous injection of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 7–22 days of life. GA brain levels were about 10-fold lower than in plasma and 5-fold lower than in skeletal and cardiac muscles, indicating that the permeability of the blood brain barrier to GA is low. We also aimed to use this model to investigate neurochemical parameters in the animals. Thus, we evaluated the effect of this model on energy metabolism parameters in midbrain, in which the striatum is localized, as well as in peripheral tissues (skeletal and cardiac muscles) of 22-day-old rats. Control rats were treated with saline in the same volumes. We verified that CO2 production from glucose was not altered in midbrain of rats treated with GA, indicating a normal functioning of the tricarboxylic acid cycle. Creatine kinase activity was also not changed in midbrain, skeletal and cardiac muscles. In contrast, complex I–III activity of the respiratory chain was inhibited in midbrain (25%), while complexes I–III (25%) and II–III (15%) activities were reduced in skeletal muscle, with no alterations found in cardiac muscle. These data indicate that GA administration moderately impairs cellular energy metabolism in midbrain and skeletal muscle of young rats.  相似文献   

5.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

6.
N-Acetylaspartic acid (NAA) accumulates in Canavan disease, a severe inherited neurometabolic disorder clinically characterized by mental retardation, hypotonia, macrocephaly, and seizures. The mechanisms of brain damage in this disease remain poorly understood. Recent studies developed by our research group showed that NAA induces oxidative stress in vitro and in vivo in cerebral cortex of rats. Lipoic acid is considered as an efficient antioxidant which can easily cross the blood–brain barrier. Considering the absence of specific treatment to Canavan disease, this study evaluates the possible prevention of the oxidative stress promoted by NAA in vivo by the antioxidant lipoic acid to preliminarily evaluate lipoic acid efficacy against pro-oxidative effects of NAA. Fourteen-day-old Wistar rats received an acute administration of 0.6 mmol NAA/g body weight with or without lipoic acid (40 mg/kg body weight). Catalase (CAT), glutathione peroxidase (GPx), and glucose 6-phosphate dehydrogenase activities, hydrogen peroxide content, thiobarbituric acid-reactive substances (TBA-RS), spontaneous chemiluminescence, protein carbonyl content, total antioxidant potential, and DNA–protein cross-links were assayed in the cerebral cortex of rats. CAT, GPx activities, and total antioxidant potential were significantly reduced, while hydrogen peroxide content, TBA-RS, spontaneous chemiluminescence, and protein carbonyl content were significantly enhanced by acute administration of NAA. Those effects were all prevented by lipoic acid pretreatment. Our results clearly show that lipoic acid may protect against the oxidative stress promoted by NAA. This could represent a new therapeutic approach to the patients affected by Canavan disease.  相似文献   

7.
The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.  相似文献   

8.
The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.  相似文献   

9.
GHB is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased during drug abuse and in the inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity. SSADH deficiency is a neurometabolic-inherited disorder of the degradation pathway of gamma-aminobutyric acid (GABA). It is biochemically characterized by increased concentrations of gamma-hydroxybutyric acid (GHB) in tissues, cerebrospinal fluid (CSF), blood and urine of affected patients. Clinical manifestations are variable, ranging from mild retardation of mental, motor, and language development to more severe neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. In the present study, the in vitro and in vivo effects of GHB was investigated on some parameters of oxidative stress, such as chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in homogenates from cerebral cortex of 15-day-old Wistar rats. In vitro, GHB significantly increased chemiluminescence and TBA-RS levels, while TRAP and TAR measurements were markedly diminished. In contrast, the activities of the antioxidant enzymes SOD, CAT and GPX were not altered by GHB in vitro. Acute administration of GHB provoked a significant enhance of TBA-RS levels and a decrease of TRAP and TAR measurements. These results indicate that GHB induces oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals who consume GHB or its prodrug gamma-butyrolactone.  相似文献   

10.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

11.
3-methylglutaconic (MGT), 3-methylglutaric (MGA) and occasionally 3-hydroxyisovaleric (OHIVA) acids accumulate in a group of diseases known as 3-methylglutaconic aciduria (MGTA). Although the clinical presentation of MGTA is mainly characterized by neurological symptoms, the mechanisms of brain damage in this disease are poorly known. In the present study we investigated the in vitro effect of MGT, MGA and OHIVA on various parameters of oxidative stress in cerebral cortex from young rats. Thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence were significantly increased by MGT, MGA and OHIVA, indicating that these metabolites induce lipid oxidative damage. Furthermore, the addition of melatonin, alpha-tocopherol and superoxide dismutase plus catalase fully prevented MGT-induced increase on TBA-RS, suggesting that free radicals were involved in this effect. These metabolites also provoked protein oxidative damage determined by increased carbonyl formation and sulfhydryl oxidation, but did not induce superoxide generation in submitochondrial particles. It was also verified that MGA and MGT significantly decreased the non-enzymatic antioxidant defenses in cerebral cortex supernatants and that melatonin and alpha-tocopherol totally blocked MGA-induced GSH reduction. The data indicate that the metabolites accumulating in MGTA elicit oxidative stress in vitro in the cerebral cortex. It is therefore presumed that this pathomechanism may be involved in the brain damage observed in patients affected by MGTA.  相似文献   

12.
It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.  相似文献   

13.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

14.
Phenylketonuria (PKU) is an autossomal recessive disease caused by phenylalanine-4-hydroxylase deficiency, which is a liver-specific enzyme that catalyzes the hydroxylation of l-phenylalanine (Phe) to l-tyrosine (Tyr). The deficiency of this enzyme leads to the accumulation of Phe in the tissues and plasma of patients. The clinical characterization of this disease is mental retardation and other neurological features. The mechanisms of brain damage are poorly understood. Oxidative stress is observed in some inborn errors of intermediary metabolism owing to the accumulation of toxic metabolites leading to excessive free radical production and may be a result of restricted diets on the antioxidant status. In the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid-reactive species (TBA-RS) and total antioxidant reactivity (TAR) in the plasma of PKU patients. The activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were also measured in erythrocytes from these patients. It was observed that phenylketonuric patients present a significant increase of plasma TBA-RS measurement, indicating a stimulation of lipoperoxidation, as well as a decrease of plasma TAR, reflecting a deficient capacity to rapidly handle an increase of reactive species. The results also showed a decrease of erythrocyte GSH-Px activity. Therefore, it is presumed that oxidative stress is involved in the pathophysiology of the tissue damage found in PKU.  相似文献   

15.
High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in this disease are poorly understood, in the present study we investigated the in vitro effect of Phe, at similar concentrations as to those found in brain of PKU patients, on important parameters of oxidative stress in the hippocampus and cerebral cortex of developing rats. We found that Phe induced in vitro lipid peroxidation (increase of TBA-RS values) and protein oxidative damage (sulfhydryl oxidation) in both cerebral structures. Furthermore, these effects were probably mediated by reactive oxygen species, since the lipid oxidative damage was totally prevented by the free radical scavengers α-tocopherol and melatonin, but not by L-NAME, a potent inhibitor of nitric oxide synthase. Accordingly, Phe did not induce nitric oxide synthesis, but significantly decreased the levels of reduced glutathione (GSH), the major brain antioxidant defense, in hippocampus and cerebral cortex supernatants. Phe also reduced the thiol groups of a commercial GSH solution in a cell-free medium. We also found that the major metabolites of Phe catabolism, phenylpyruvate, phenyllactate and phenylacetate also increased TBA-RS levels in cerebral cortex, but to a lesser degree. The data indicate that Phe elicits oxidative stress in the hippocampus, a structure mainly involved with learning/memory, and also in the cerebral cortex, which is severely damaged in PKU patients. It is therefore presumed that this pathomechanism may be involved at least in part in the severe cognitive deficit and in the characteristic cortical atrophy associated with dysmyelination and leukodystrophy observed in this disorder.  相似文献   

16.
Antioxidant properties of many medicinal plants have been widely recognized and some of them have been commercially exploited. Plant derived antioxidants play a very important role in alleviating problems related to oxidative stress. The present study was aimed at assessing the antioxidant property of costunolide and eremanthin isolated from a medicinal plant Costus speciosus (Koen ex. Retz) Sm. rhizome. Experimental diabetes was induced by a single dose of STZ (60 mg/kg, i.p.) injection. The oxidative stress was measured by tissue thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in brain, liver, heart, kidney and pancreas. An increase in TBARS level, a significant reduction in GSH content along with decreased enzymatic activities of SOD, CAT, and GPx were seen in untreated diabetic rats. Administration of either costunolide (20 mg/kg day) or eremanthin (20 mg/kg day) for 60 days caused a significant reduction in TBARS level and a significant increase in GSH content along with increased enzymatic activities of SOD, CAT and GPx in the treated rats when compared to untreated diabetic rats. Acute toxicity test revealed the non-toxic nature of the compounds. The results indicated for the first time the protective effect of costunolide and eremanthin from oxidative stress, thus opening the way for their use in medication.  相似文献   

17.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

18.
The five major antioxidants enzymes, cytochrome oxidase (COX), GSH, and GSSG, and endogenous and in vitro stimulated lipid peroxidation (TBA-RS) were assayed in the lung of old (28 months) and young (9 months) adult rats due to the almost total absence of data of this kind in this tissue, which is normally exposed to relatively high pO2 throughout life. Catalase, selenium (Se)-dependent GSH peroxidase (GPx), GSH reductase, GSH, GSSG, GSSG/GSH, and in vivo and in vitro TBA-RS showed similar values in old and young animals. The decrease observed for non Se-dependent GPx disappeared when the values were expressed in relation to COX activity. Only superoxide dismutase showed a clear decrease when referred both to protein and COX activity. These results suggest that lung aging is not accelerated in old age due to a decrease in the antioxidant capacity of the tissue. Nevertheless, they are compatible with a continuous damage of the lung tissue by free radicals throughout the life span.  相似文献   

19.
This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.  相似文献   

20.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号