首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen Q  Chen Y  Qi Y  Hao L  Tang S  Xiao X 《Mutation research》2008,644(1-2):11-16
Carbadox, a quinoxaline 1,4-dioxide derivative, is a known mutagen with its functional mechanism yet to be well defined. In the present study we used a shuttle vector assay in vitro to uncover the functional details of carbadox-induced mutagenesis in mammalian cells. The plasmid DNA of a shuttle vector pSP189 was treated with different doses of carbadox at 37 degrees C for 1 or 2h with or without the presence of S9. The target gene SupF in the plasmid was sequenced after replication in Vero cells followed by amplification in Escherichia coli MBM7070 to evaluate mutation frequency. DNA sequencing analysis of recovered carbadox-induced mutations revealed 76.3% single base substitution, 7.9% single base insertion, 10.5% single base deletion and 5.3% large fragments deletion. All single base substitutions occurred at G:C base pairs, among which transversion and transition occurred at a 2:1 ratio. The mutations did not occur randomly in the supF gene, but had sequence specificity and hotspots instead: most substitutions were detected at the nucleotide N in a 5'-NNTTNN-3' sequence; 75% of base insertions were seen in the 5'-TCC-3' sequence; whereas all large fragments deletions occurred in the 5'-ANGGCCNAAA-3' sequence. Nucleotide 129, 141 and 155 in the supF gene of plasmid pSP189 were identified as the hotspots for carbadox-induced mutations that accounted for 65% of all single base substitutions. We conclude that carbadox and its metabolites induce sequence-specific DNA mutations at high frequencies, therefore its safe usage in animal husbandry should be seriously considered.  相似文献   

2.
When a shuttle vector containing a tyrosine suppressor tRNA (supF) gene as a target for mutagenesis replicated in a monkey kidney cell line, the frequency of SupF+ mutations was 2.3 +/- 0.5 x 10(-3). When the host cells were treated with ethyl methanesulfonate 40 h before transfection, a 10-fold increase in SupF+ mutation frequency was observed. These results supported the hypothesis that a damage-inducible mutagenic pathway exists in mammalian cells and also demonstrated the utility of this shuttle vector for the study of mutagenesis in mammalian cells.  相似文献   

3.
Malondialdehyde (MDA) is an endogenous genotoxic product of enzymatic and oxygen radical-induced lipid peroxidation whose adducts are known to exist in DNA isolated from healthy human beings. To evaluate the mutagenic potential of MDA in human cells, we reacted MDA with pSP189 shuttle vector DNA and then transfected them into human fibroblasts for replication. MDA induced up to a 15-fold increase in mutation frequency in the supF reporter gene compared with untreated DNA. Sequence analysis revealed that the majority of MDA-induced mutations occurred at GC base pairs. The most frequent mutations were large insertions and deletions, but base pair substitutions were also detected. MDA-induced mutations were completely abolished when the adducted shuttle vector was replicated in cells lacking nucleotide excision repair. MDA induction of large deletions and the apparent requirement for nucleotide excision repair suggested the possible involvement of a DNA interstrand cross-link as a premutagenic lesion. Indeed, MDA formed interstrand cross-links in duplex plasmids and oligonucleotides. Substrates containing the sequence 5'-d(CG) were preferentially cross-linked, consistent with the observation of base pair substitutions in 5'-d(CG) sites in the MDA-induced mutation spectrum. These experiments provide biological and biochemical evidence for the existence of MDA-induced DNA interstrand cross-links that could result from endogenous oxidative stress and likely have potent biological effects.  相似文献   

4.
Errors associated with the repair of DNA double-strand breaks (DSBs) include point mutations caused by misincorporation during repair DNA synthesis or novel junctions made by nonhomologous end joining (NHEJ). We previously demonstrated that DNA synthesis is approximately 100-fold more error prone when associated with DSB repair. Here we describe a genetic screen for mutants that affect the fidelity of DSB repair. The substrate consists of inverted repeats of the trp1 and CAN1 genes. Recombinational repair of a site-specific DSB within the repeat yields TRP1 recombinants. Errors in the repair process can be detected by the production of canavanine-resistant (can1) mutants among the TRP1 recombinants. In wild-type cells the recombinational repair process is efficient and fairly accurate. Errors resulting in can1 mutations occur in <1% of the TRP1 recombinants and most appear to be point mutations. We isolated several mutant strains with altered fidelity of recombination. Here we characterize one of these mutants that revealed an approximately 10-fold elevation in the frequency of can1 mutants among TRP1 recombinants. The gene was cloned by complementation of a coincident sporulation defect and proved to be an allele of SAE2/COM1. Physical analysis of the can1 mutants from sae2/com1 strains revealed that many were a novel class of chromosome rearrangement that could reflect break-induced replication (BIR) and NHEJ. Strains with either the mre11s-H125N or rad50s-K81I alleles had phenotypes in this assay that are similar to that of the sae2/com1Delta strain. Our data suggest that Sae2p/Com1p plays a role in ensuring that both ends of a DSB participate in a recombination event, thus avoiding BIR, possibly by regulating the nuclease activity of the Mre11p/Rad50p/Xrs2p complex.  相似文献   

5.
We describe the development of genetic tools for regulated gene expression, the introduction of chromosomal mutations, and improved plasmid transfer by electroporation in the food-borne pathogen Listeria monocytogenes. pIMK, a kanamycin-resistant, site-specific, integrative listeriophage vector was constructed and then modified for overexpression (pIMK2) or for isopropyl-beta-d-thiogalactopyranoside (IPTG)-regulated expression (pIMK3 and pIMK4). The dynamic range of promoters was assessed by determining luciferase activity, P60 secretion, and internalin A-mediated invasion. These analyses demonstrated that pIMK4 and pIMK3 have a stringently controlled dynamic range of 540-fold. Stable gene overexpression was achieved with pIMK2, giving a range of expression for the three vectors of 1,350-fold. The lactococcal pORI280 system was optimized for the generation of chromosomal mutations and used to create five new prfA star mutants. The combination of pIMK4 and pORI280 allowed streamlined creation of "IPTG-dependent" mutants. This was exemplified by creation of a clean deletion mutant with deletion of the universally essential secA gene, and this mutant exhibited a rapid loss of viability upon withdrawal of IPTG. We also improved plasmid transfer by electroporation into three commonly used laboratory strains of L. monocytogenes. A 125-fold increase in transformation efficiency for EGDe compared with the widely used protocol of Park and Stewart (S. F. Park and G. S. Stewart, Gene 94:129-132, 1990) was observed. Maximal transformation efficiencies of 5.7 x 10(6) and 6.7 x 10(6) CFU per mug were achieved for EGDe and 10403S, respectively, with a replicating plasmid. An efficiency of 2 x 10(7) CFU per mug is the highest efficiency reported thus far for L. monocytogenes F2365.  相似文献   

6.
DNA double strand breaks (DSBs) are usually repaired through either non-homologous end-joining (NHEJ) or homologous recombination (HR). While HR is basically error-free repair, NHEJ is a mutagenic pathway that leads to deletion. NHEJ must be precisely regulated to maintain genomic integrity. To clarify the role of NHEJ, we investigated the genetic consequences of NHEJ repair of DSBs in human cells. Human lymphoblastoid cell lines TSCE5 and TSCE105 have, respectively, single and double I-SceI endonuclease sites in the endogenous thymidine kinase gene (TK) located on chromosome 17q. I-SceI expression generated DSBs at the TK gene. We used the novel transfection system (Amaxa Nucleofector) to introduce an I-SceI expression vector into the cells and randomly isolated clones. We found mutations involved in the DSBs in the TK gene in 3% of TSCE5 cells and 30% of TSCE105 cell clones. Most of the mutations in TSCE5 were small (1-30bp) deletions with a 0-4bp microhomology at the junction. The others consisted of large (>60) bp deletions, an insertion, and a rearrangement. Mutants resulting from interallelic HR also occurred, but infrequently. Most of the mutations in TSCE105, on the other hand, were deletions that encompassed the two I-SceI sites generated by NHEJ at DSBs. The sequence joint was similar to that found in TSCE5 mutants. Interestingly, some mutants formed a new I-SceI site by perfectly joining the two original I-SceI sites without deletion of the broken-ends. These results support the idea that NHEJ for repairing I-SceI-induced DSBs mainly results in small or no deletions. Thus, NHEJ must help maintain genomic integrity in mammalian cells by repairing DSBs as well as by preventing many deleterious alterations.  相似文献   

7.
Rattray AJ  Shafer BK  McGill CB  Strathern JN 《Genetics》2002,162(3):1063-1077
The DNA synthesis associated with recombinational repair of chromosomal double-strand breaks (DSBs) has a lower fidelity than normal replicative DNA synthesis. Here, we use an inverted-repeat substrate to monitor the fidelity of repair of a site-specific DSB. DSB induction made by the HO endonuclease stimulates recombination >5000-fold and is associated with a >1000-fold increase in mutagenesis of an adjacent gene. We demonstrate that most break-repair-induced mutations (BRIMs) are point mutations and have a higher proportion of frameshifts than do spontaneous mutations of the same substrate. Although the REV3 translesion DNA polymerase is not required for recombination, it introduces approximately 75% of the BRIMs and approximately 90% of the base substitution mutations. Recombinational repair of the DSB is strongly dependent upon genes of the RAD52 epistasis group; however, the residual recombinants present in rad57 mutants are associated with a 5- to 20-fold increase in BRIMs. The spectrum of mutations in rad57 mutants is similar to that seen in the wild-type strain and is similarly affected by REV3. We also find that REV3 is required for the repair of MMS-induced lesions when recombinational repair is compromised. Our data suggest that Rad55p/Rad57p help limit the generation of substrates that require pol zeta during recombination.  相似文献   

8.
Wang J  Yu S  Jiao S  Lv X  Ma M  Zhu BZ  Du Y 《Mutation research》2012,729(1-2):16-23
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.  相似文献   

9.
Lyndaker AM  Goldfarb T  Alani E 《Genetics》2008,179(4):1807-1821
Efficient repair of DNA double-strand breaks (DSBs) requires the coordination of checkpoint signaling and enzymatic repair functions. To study these processes during gene conversion at a single chromosomal break, we monitored mating-type switching in Saccharomyces cerevisiae strains defective in the Rad1-Rad10-Slx4 complex. Rad1-Rad10 is a structure-specific endonuclease that removes 3' nonhomologous single-stranded ends that are generated during many recombination events. Slx4 is a known target of the DNA damage response that forms a complex with Rad1-Rad10 and is critical for 3'-end processing during repair of DSBs by single-strand annealing. We found that mutants lacking an intact Rad1-Rad10-Slx4 complex displayed RAD9- and MAD2-dependent cell cycle delays and decreased viability during mating-type switching. In particular, these mutants exhibited a unique pattern of dead and switched daughter cells arising from the same DSB-containing cell. Furthermore, we observed that mutations in post-replicative lesion bypass factors (mms2Delta, mph1Delta) resulted in decreased viability during mating-type switching and conferred shorter cell cycle delays in rad1Delta mutants. We conclude that Rad1-Rad10-Slx4 promotes efficient repair during gene conversion events involving a single 3' nonhomologous tail and propose that the rad1Delta and slx4Delta mutant phenotypes result from inefficient repair of a lesion at the MAT locus that is bypassed by replication-mediated repair.  相似文献   

10.
A mutagenesis system was developed for the in vivo study of the fidelity of DNA replication mediated by wild-type herpes simplex virus type 1 (HSV-1) strain KOS and its polymerase (Pol) mutant derivatives PAAr5, Y7, and YD12. The pHOS1 shuttle plasmid, which contained the SupF mutagenesis marker gene and the HSV oris sequence, was used for analysis of the mutation frequency and the mutation spectrum. All three Pol mutants induced significant increases in the mutation frequencies of the target gene, despite the fact that PAAr5 was previously shown to have an antimutator phenotype by the thymidine kinase mutagenesis assay (J. D. Hall, D. M. Coen, B. L. Fisher, M. Weisslitz, S. Randall, R. E. Almy, P. Gelep, and P. A. Schaffer, Virology 132:26-37, 1984; C. B. C. Hwang and J.-H. Chen, Gene 152:191-193, 1995). Altered spectra of mutated target genes induced by these three mutants were also observed. The relative frequencies of both deletion and complex mutations found in mutants induced by exonuclease-proficient Pols were significantly higher than those induced by exonuclease-deficient Pols. On the other hand, the exonuclease-deficient Pols induced significant increases in the frequency of base substitutions, which comprised predominantly G. C-to-T. A transversions, as well as mutations at additional hot spots. These results suggest that the HSV-1 DNA Pol can incorporate purine-purine or pyrimidine-pyrimidine mispaired bases which may be preferentially proofread by its intrinsic exonuclease activity. Furthermore, the effects of the sequence context of the target gene and the assay method should also be considered carefully in any analysis of replication fidelity.  相似文献   

11.
The holD gene codes for the psi subunit of the Escherichia coli DNA polymerase III holoenzyme, a component of the gamma complex clamp loader. A holD mutant was isolated for the first time in a screen for mutations that increase the frequency of tandem repeat deletions. In contrast to tandem repeat deletions in wild-type strains, deletion events stimulated by the holD mutation require RecA. They do not require RecF, and hence do not result from the recombinational repair of gaps, arguing against uncoupling of the leading and lagging strand polymerases in the holD mutant. The holD recBC combination of mutations is lethal and holD recBts recCts strains suffer DNA double-strand breaks (DSBs) at restrictive temperature. DSBs require the presence of the Holliday junction-specific enzymes RuvABC and are prevented in the presence of RecBCD. We propose that impairment of replication due to the holD mutation causes the arrest of the entire replisome; consequently, Holliday junctions are formed by replication fork reversal, and unequal crossing over during RecA- and RecBCD-mediated re-incorporation of reversed forks causes the hyper-recombination phenotype.  相似文献   

12.
The drug tamoxifen, used to treat breast cancer, causes liver cancer in rats and endometrial cancer in women. Tamoxifen forms liver DNA adducts in both short- and long-term dosing of rodents, and DNA adducts have also been reported in tissues of women undergoing tamoxifen therapy. It is not known if the induction of endometrial cancer in women is through these DNA adducts or through the estrogenic nature of the drug. In this study, we have investigated the mutagenicity of two model reactive intermediates of tamoxifen, alpha-acetoxytamoxifen and 4-hydroxytamoxifen quinone methide (4-OHtamQM). These form the same DNA adducts as those found in tamoxifen-treated rats. The two compounds were used to treat the pSP189 plasmid containing the supF gene, which was replicated in Ad293 cells before being screened in indicator bacteria. Plasmid reacted with 4-OHtamQM was more likely to be mutated (2-7-fold increase) than that reacted with alpha-acetoxytamoxifen, despite having a lower level of DNA damage (12-20-fold less), as assayed by (32)P-postlabeling. The two compounds induced statistically different mutation spectra in the supF gene. The majority of mutations in alpha-acetoxytamoxifen-treated plasmid were GC -->TA transversions while GC-->AT transitions were formed in 4-OHtamQM-treated plasmid. 4-OHTamQM-treated DNA induced a larger proportion of multiple mutations and large deletions compared to alpha-acetoxytamoxifen. Sites of mutational hotspots were observed for both compounds. In conclusion, the quantitatively minor DNA adduct of tamoxifen (dG-N(2)-4-hydroxytamoxifen) is more mutagenic than the major tamoxifen DNA adduct (dG-N(2)-tamoxifen).  相似文献   

13.
14.
15.
DNA double-strand breaks caused by replication arrest.   总被引:34,自引:1,他引:33       下载免费PDF全文
B Michel  S D Ehrlich    M Uzest 《The EMBO journal》1997,16(2):430-438
We report here that DNA double-strand breaks (DSBs) form in Escherichia coli upon arrest of replication forks due to a defect in, or the inhibition of, replicative DNA helicases. The formation of DSBs was assessed by the appearance of linear DNA detected by pulse-field gel electrophoresis. Processing of DSBs by recombination repair or linear DNA degradation was abolished by mutations in recBCD genes. Two E. coli replicative helicases were tested, Rep, which is essential in recBC mutants, and DnaB. The proportion of linear DNA increased up to 50% upon shift of rep recBTS recCTS cells to restrictive temperature. No increase in linear DNA was observed in the absence of replicating chromosomes, indicating that the formation of DSBs in rep strains requires replication. Inhibition of the DnaB helicase either by a strong replication terminator or by a dnaBTS mutation led to the formation of linear DNA, showing that blocked replication forks are prone to DSB formation. In wild-type E. coli, linear DNA was detected in the absence of RecBC or of both RecA and RecD. This reveals the existence of a significant amount of spontaneous DSBs. We propose that some of them may also result from the impairment of replication fork progression.  相似文献   

16.
Cells from ataxia-telangiectasia (AT) patients are hypersensitive to the lethal effects of ionizing radiation. To assess radiation mutagenesis in these cells, the SV40-based shuttle vector, pZ189, was used to analyze gamma-ray-induced mutations following the plasmid's replication in AT lymphoblasts. Progenies from the AT line GM2783 exposed to 50 Gy showed a mutation frequency of 7.6 x 10(-3), 63-fold over background; surviving plasmids were 3.4% of control. Both values were essentially the same as those of irradiated plasmids replicated in a normal lymphoblast line, GM606. In addition, pZ189 exposed to 25 Gy of gamma radiation and replicated in another normal lymphoblast line and in cells of two additional AT lymphoblast lines showed similar mutation frequencies and percentages of surviving plasmids. Qualitative comparison of plasmid mutations from AT and normal cells showed no significant differences, indicating that the damaged DNA was repaired with similar fidelity in AT and normal cells. These studies suggest that there is no correlation between the enhanced sensitivity of AT cells to killing by ionizing radiation and gamma-radiation-induced mutagenesis of plasmid DNA processed in these cells.  相似文献   

17.
A. R. Oller  R. M. Schaaper 《Genetics》1994,138(2):263-270
We have previously isolated mutants of Escherichia coli that replicate their DNA with increased fidelity. These mutants have a mutation in the dnaE gene, encoding the α subunit of DNA polymerase III. They were isolated in a mismatch-repair-defective mutL background, in which mutations can be considered to represent uncorrected DNA replication errors. In the present study we analyze the effect of one of these alleles, dnaE911, on spontaneous mutagenesis in a mismatch-repair-proficient background. In this background, spontaneous mutations may be the sum of uncorrected replication errors and mutations resulting from other pathways. Hence, the effect of the dnaE allele may provide insights into the contribution of uncorrected DNA replication errors to spontaneous mutation. The data show that dnaE911 decreases the level of Rif(r), lacI and galK mutations in this background by 1.5-2-fold. DNA sequencing of 748 forward mutants in the lacI gene reveals that this effect has a clear specificity. Transversions are decreased by ~3-fold, whereas transitions, frameshifts, deletions and duplications remain essentially unchanged. Among the transversions, A·T -> T·A are affected most strongly (~6-fold). In addition to this effect on transversions within the lacI gene, one previously recognized A·T -> G·C base-pair substitution hotspot in the lac operator is also reduced (~5-fold). The data are discussed in the light of the role of DNA replication errors in spontaneous mutation, as well as other possible explanations for the observed antimutator effects.  相似文献   

18.
A method for in vivo studying the fidelity of DNA double-strand break (DSB) repair in bacteriophage T4 has been developed. The frequency of reversion of rII mutations to the wild phenotype was measured in i segC+ x i ets 1 segCDelta crosses, where ets 1 is an insertion in the initial part of the rII gene carrying a sequence recognized by SegC endonuclease; i designates a rIIB or rIIA mutation located at some distance from ets 1, and segCDelta is a deletion in the segC gene. In such cross, a DSB occurs in the site of ets 1. Their repair involves genetic recombination and DNA replication in the neighborhood of ets 1. In parallel, the frequency of reversion of the same i mutant in the absence of DSBs is measured in i x i self-crosses. Reversions of different types (base substitutions, deletions, insertions) can be studied with the use of structurally different i mutations located at varying distances from ets 1. The reversion frequencies were determined for three rIIB mutations and one rIIA mutation. The results obtained suggest that DSB repair in bacteriophage T4 is a process of high fidelity with the rate of errors that does not essentially exceed that in the case of usual phage multiplication.  相似文献   

19.
20.
Treatment of a plasmid shuttle vector (pZ189) with a combination of hydrogen peroxide and a ferric iron/EDTA complex prior to transfection and passage in simian (CV-1) cells increases the frequency of mutations at the supF locus by up to 60-fold over the spontaneous background. This increase in mutation frequency is abolished when the inhibitors desferrioxamine, superoxide dismutase, catalase or dimethyl sulfoxide are included in the initial reaction or when the iron/EDTA complex is omitted, a strong indication that the premutagenic damage arises as a result of direct attack by hydroxyl radical generated in a superoxide driven Fenton reaction. DNA sequence analysis of the mutated plasmids shows that 1) Deletions occuring in combination with base-substitutions arise in 22.5 percent of the induced mutants compared with only 3 percent of spontaneous mutants 2) Sixty percent of all induced deletion mutations involve the loss of a single base and 77 percent of these (20 out of 26) occur at two adenine-containing sites 3) The base-change spectrum of mutants arising in the treated plasmid population is marked by the predominance of mutants containing a single base-change and by an increase in changes at AT base pairs. These results provide direct information concerning the nature of mutations arising in mammalian cells as a result of hydroxyl radical mediated DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号