首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging decreases hormone responsiveness in several receptor systems. In this article I consider both physiological and biochemical studies supporting the hypothesis that beta-adrenergic receptor responsiveness is reduced with aging in humans. Reduced chronotropic and vasodilator responses to the beta-receptor agonists isoproterenol and metaproterenol have been demonstrated. In human leukocytes a reduction in adenylate cyclase (EC 4.6.1.1) activity occurs with aging. More recently it has been suggested that this reduction in beta-adrenergic responsiveness with aging may be caused by an uncoupling of the beta receptor from the catalytic component.  相似文献   

2.
[3H]Dihydroalprenolol binding and adenylate cyclase activity in the myocardial membranes of Kyoto Wistar normotensive rats and spontaneously hypertensive rats were compared at various stages of postnatal development ranging from 2 to 36 weeks. Basal as well as agonist-stimulated myocardial adenylate cyclase activity was consistently decreased in spontaneously hypertensive rats as compared to normotensive rats as early as 2 weeks of age with significant differences (P < 0.05) observed after 6 weeks of age. When results were expressed as percent stimulation over the basal activity, only isoproterenol plus GTP-stimulated enzyme activity was reduced by 25--30% in spontaneously hypertensive rats, suggesting a specific loss of stimulation by isoproterenol in hypertensive animals. The number of [3H]dihydroalprenolol binding sites of KD for dihydroalprenolol binding were comparable between spontaneously hypertensive and normotensive rats at 3, 6 and 12 weeks of age. The competition of isoproterenol with [3H]dihydroalprenolol for the specific binding sites showed that the affinity of isoproterenol binding was decreased 3--4-fold in spontaneously hypertensive compared with normotensive rats. With postnatal development in age, basal as well as agonist-stimulated activities decreased progressively in both spontaneously hypertensive and normotensive rats. Similarly, the number of [3H]dihydroalprenolol binding sites decreased with the development in age, whereas affinity of dihydroalprenolol binding increased up to 12 weeks of age. These results therefore suggest that adenylate cyclase activity and the number of beta-adrenergic receptors in rat heart, decrease with age and that in hypertension, specific decrease in isoproterenol stimulation of cyclase appears at all stages of development.  相似文献   

3.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

4.
Lymphocyte adenylate cyclase and human aging   总被引:2,自引:0,他引:2  
Adenylate cyclase activity was determined by enzymatic conversion of [32P]ATP to [32P]cAMP using peripheral lymphocytes freshly isolated from human subjects. The lymphocyte enzyme was stimulated by the potent beta-adrenergic catecholamine agonist isoproterenol and by the nonhydrolyzable GTP-analog Gpp[NH]p. The two activators had a synergistic effect, and agonist-dependent enzyme activity followed simple Michaelis-Menten kinetics with respect to isoproterenol in the presence but not in the absence of Gpp[NH]p. Cyclic AMP production by intact lymphocytes, determined by protein binding assay, also followed simple Michaelis-Menten kinetics with respect to isoproterenol. Kact of isoproterenol was the same in intact cells and the broken cell assay in the presence of Gpp[NH]p, suggesting the indispensable role the GTP-binding coupling factors play in the intact lymphocyte. In 31 human subjects between the age of 21 and 103, adenylate cyclase activity in the presence of isoproterenol, Gpp[NH]p, or isoproterenol in the presence of Gpp[NH]p decreased with the increasing age of the subject. The sensitivity of the enzyme to stimulation by isoproterenol, defined as the Kact and determined in the presence of Gpp[NH]p, was the same in lymphocytes from young (less than 45 years) or elderly (greater than 75 years) subjects. These results suggest a deficiency in the lymphocyte adenylate cyclase system distal to the beta-adrenergic catecholamine receptor could account for deterioration of cAMP-mediated components of the immune response which occur with age.  相似文献   

5.
Age-related loss of adenylate cyclase responsiveness to guanyl nucleotide was demonstrated in lymphocytes freshly isolated from human subjects. Enzyme activity of cells from young (<40 years) and elderly (>65 years) subjects were markedly sensitive to inhibition by non-ionic detergents. When enzyme activity in the presence of guanyl nucleotide and low concentrations of Triton X-100 was determined in a mixture of cells from the young and aged donors, the activity was 40±17 percent (mean ± S.D.) greater than anticipated from the activity of the cells of the two age groups assayed separately. The detergent range which facilitated the enhanced enzyme activity was too low to extract the catalytic subunit of adenylate cyclase from the cells. These results further suggest that in man, changes distal to receptors contribute to diminished responsiveness of lymphocyte adenylate cyclase as a function of age. In addition, these age-related changes may be partially reversible by reconstitution with factors from cells from younger subjects.  相似文献   

6.
The activity of the beta-adrenergic receptor/adenylate cyclase system of the marmoset monkey heart was investigated following dietary cholesterol supplementation (0.5%). After 22 weeks, plasma cholesterol levels in the cholesterol group were more than twice that of the control group. In the cholesterol-fed group, the affinity for ICYP binding to cardiac membranes was elevated more than 2-fold, while the receptor number was decreased by 31%. Isoproterenol, norepinephrine and sodium fluoride stimulated adenylate cyclase activity was significantly higher in the cholesterol-fed group although the fold stimulation over basal levels was not affected. The most prominent change in the cardiac membrane lipids was an increase in the cholesterol to phospholipid ratio in marmoset monkeys fed cholesterol. These results indicate that in the marmoset, membrane cholesterol is an important factor in determining various properties of the cardiac beta-adrenergic receptor particularly receptor affinity which may impact on the response of the beta-adrenergic receptor/adenylate cyclase system of the heart to catecholamines. This result is in agreement with dietary fatty acid supplements designed to increase cardiac membrane cholesterol in this animal species (McMurchie, E.J. et al. (1988) Biochim. Biophys. Acta 937, 347-358). Elevated membrane cholesterol enhances beta-adrenergic receptor affinity and certain aspects of adenylate cyclase activity. This is a likely mechanism whereby atherogenic diets could promote cardiac arrhythmia in non-human primates and indeed in man.  相似文献   

7.
Incubation of human astrocytoma cells (1321N1) with low concentrations of isoproterenol results in a specific loss of responsiveness to catecholamines as evidenced by a decreased accumulation of cAMP in intact cells, a reduction in isoproterenol-stimulated adenylate cyclase activity, and a decrease in beta-adrenergic receptor density, as measured by the specific binding of 125I-hydroxybenzylpindolol. The kinetics of desensitization suggest the involvement of two different reactions. The initial reaction involves a rapid loss of adenylate cyclase activity with little loss of beta-adrenergic receptors. Subsequently, a slower reaction results in the loss of measurable beta-adrenergic receptors. The degree of loss of both parameters was similar after 24 h of desensitization. It is concluded that the loss of beta-adrenergic receptors is an event that occurs as a result of the initial uncoupling of the beta-receptor-linked adenylate cyclase.  相似文献   

8.
Dietary salt intake and urinary sodium excretion were compared in normotensive and hypertensive subjects in Renfrew, Scotland. All groups had high 24-hour urinary salt excretions, and hypertensive subjects did not eat or excrete more salt than normotensive subjects. The only significant relations found were a lower sodium excretion in hypertensive women than in normotensive women (p < 0.02) and a lower urinary sodium concentration in hypertensive men than in normotensive men (p < 0.05). These data provide no support for the hypothesis that dietary salt is a major cause of hypertension.  相似文献   

9.
Summary The beta-adrenergic receptor which is coupled to adenylate cyclase in the frog erythrocycte plasma membrane provides a convenient model system for probing the molecular characteristics of an adenylate cyclase coupled hormone receptor. Direct radioligand binding studies with beta-adrenergic agonists and antagonists such as [3H]hydroxybenzylisoproterenol and [3H]dihydroalprenolol have shed new light on the biochemical properties of the receptor as well as on its mode of interaction with other components of the adenylate cyclase system. Agonist binding to the receptor induces a high affinity state of the receptor which can be selectively reverted to a low agonist affinity state by guanyl nucleotides. This agonist-induced high affinity state of the receptor appears to correspond to a receptor moiety which has larger apparent molecular weight and which is probably a complex of the beta-adrenergic receptor and nucleotide regulatory binding protein. Antagonists do not appear capable of inducing or stabilizing the formation of this high affinity receptor-nucleotide site complex.The beta-adrenergic receptors have been solubilized using the plant glycoside digitonin as the detergent and have been highly purified by biospecific affinity chromatography on an alprenolol-agarose affinity support. These highly purified receptor preparations retain all of the binding characteristics observed in the unpurified soluble receptor preparations.Remarkably, antibodies raised in rabbits against affinity chromatography purified preparations of the receptor, themselves bind beta-adrenergic ligands with typical beta-adrenergic specificity. Such antibodies which possess binding sites similar to those of physiological receptors provide useful model systems for further probing the molecular characteristics of beta-adrenergic binding sites.  相似文献   

10.
Rat parotid gland secretion cannot be activated through beta-adrenergic stimulation of adenylate cyclase until after 2 weeks postnatal. We have studied the relationship of the levels of putative guanine nucleotide-binding regulatory components (G/F) of the cyclase system to the onset of hormone responsiveness. The effect of sympathetic denervation on the components of this system during development of secretory function also has been examined. Nucleotide-dependent, hormone-stimulated, and fluoride-stimulated adenylate cyclase activities in parotid membranes are present at low levels at birth and increase 2-fold between 14 and 18 days postnatal while beta-adrenergic receptor levels remain constant. G/F proteins, regulatory for adenylate cyclase activation, were quantitated by ADP-ribosylation in the presence of cholera toxin. Labeling of two cholera toxin-specific substrates occurs at low levels in neonatal rats and increases sharply at the critical 14-18-day period. This provides a plausible explanation for the increase in adenylate cyclase sensitivity at this time, although increases in cyclase catalytic units and/or coupling efficiency of receptor and cyclase may also be involved. In previous studies we found that animals chemically sympathectomized with 6-hydroxydopamine at birth developed elevated levels of membrane-bound beta-adrenergic receptors. The functional consequence is that treated animals show a shift (1.7-fold) toward increased sensitivity in the dose-response curve for adenylate cyclase activation by isoproterenol. However, the levels of maximal hormone- and fluoride-stimulated adenylate cyclase activities do not change, suggesting that some component distal to the receptor is limiting under both control and treated conditions, or that there are deficiencies in coupling of the receptor pool.  相似文献   

11.
Studies on the relationship between thyroid hormone and the beta-adrenergic catecholamines have been carried out in the turkey erythrocyte. Conditions of thyroid hormone excess and deficiency were examined with respect to their effects on the beta receptor itself, as well as to their effects on associated biochemical and physiological indices of beta receptor function, including agonist stimulated adenylate cyclase activity, cellular cyclic AMP generation, and catecholamine-induced stimulation of potassium ion influx. Erythrocytes obtained from hypothyroid turkeys showed a marked (approximately 50%) reduction in beta receptor number without any change in receptor affinity for agonists or antagonists. Catecholamine-sensitive adenylate cyclase activity and cellular cyclic AMP levels were similarly reduced. The sensitivity of these cells to agonist-stimulated potassium influx was significantly decreased, but maximal agonist-stimulated transport rate was unchanged. Analysis of the quantitative relationship between beta receptor number, agonist concentration, and level of catecholamine-stimulated potassium influx indicates that, at any given absolute level of receptor occupancy, the level of agonist-stimulated potassium influx is identical in hypothyroid and normal erythrocytes, and that the diminished physiological sensitivity of the hypothyroid cell is attributable in its entirety to a reduction in beta receptor number per se. The results obtained in the hyperthyroid turkey erythrocyte were strikingly different. Here, beta receptor number, binding affinity for agonists and antagonists, catecholamine-sensitive adenylate cyclase activity, and maximal cyclic AMP levels were all unchanged. In contrast, maximal agonist-stimulated potassium ion transport was markedly reduced, while the concentration of isoproterenol required for half-maximal stimulation was only slightly increased. Analysis of the relationship between beta receptor number, agonist concentration, and catecholamine-stimulated potassium influx rate indicates that, at all absolute levels of beta receptor occupancy, the stimulation of monovalent cation influx is markedly blunted in the hyperthyroid cell. In contrast to the findings in the hypothyroid cell, where decreased physiologic sensitivity to catecholamines is directly attributable to a reduction in beta receptor number, the primary abnormality responsible for diminished catecholamine responsiveness in the hyperthyroid cell would appear to be located at a point "distal" to the beta receptor itself.  相似文献   

12.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

13.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

14.
Diets supplemented with high levels of saturated or unsaturated fatty acids supplied by addition of sheep kidney fat or sunflower seed oil, respectively, were fed to rats with or without dietary cholesterol. The effects of these diets on cardiac membrane lipid composition, catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor activity associated with cardiac membranes, were determined. The fatty acid-supplemented diets, either with or without cholesterol, resulted in alterations in the proportion of the (n-6) to (n-3) series of unsaturated fatty acids, with the sunflower seed oil increasing and the sheep kidney fat decreasing this ratio, but did not by themselves significantly alter the ratio of saturated to unsaturated fatty acids. However, cholesterol supplementation resulted in a decrease in the proportion of saturated and polyunsaturated fatty acids and a dramatic increase in oleic acid in cardiac membrane phospholipids irrespective of the nature of the dietary fatty acid supplement. The cholesterol/phospholipid ratio of cardiac membrane lipids was also markedly increased with dietary cholesterol supplementation. Although relatively unaffected by the nature of the dietary fatty acid supplement, catecholamine-stimulated adenylate cyclase activity was significantly increased with dietary cholesterol supplementation and was positively correlated with the value of the membrane cholesterol/phospholipid ratio. Although the dissociation constant for the beta-adrenergic receptor, determined by [125I](-)-iodocyanopindolol binding, was unaffected by the nature of the dietary lipid supplement, the number of beta-adrenergic receptors was dramatically reduced by dietary cholesterol and negatively correlated with the value of the membrane cholesterol/phospholipid ratio. These results indicate that the activity of the membrane-associated beta-adrenergic/adenylate cyclase system of the heart can be influenced by dietary lipids particularly those altering the membrane cholesterol/phospholipid ratio and presumably membrane physico-chemical properties. In the face of these dietary-induced changes, a degree of homeostasis was apparent both with regard to membrane fatty acid composition in response to an altered membrane cholesterol/phospholipid ratio, and to down regulation of the beta-adrenergic receptor in response to enhanced catecholamine-stimulated adenylate cyclase activity.  相似文献   

15.
Murine 3T3-L1 fibroblasts enter a differentiation program subsequent to prolonged maintenance in the confluent state and develop into adipocytes. The hormone sensitivity of adenylate cyclase and the physiological responsiveness to insulin were compared in 3T3-L1 preadipocytes and adipocytes. The following observations, comprising several distinct categories of hormone responsiveness, were made. (a) (2.5 micronM) isoproterenol stimulated adenylate cyclase 15-fold in adipocyte homogenates, but only 2.5-fold in preadipocyte preparations, suggesting a considerable magnification in beta-adrenergic responsiveness during development. (b) A totally new control element, adrenocorticotropic hormone responsiveness, was incorporated into the adenylate cyclase system of the adipocytes. (c) Sensitivity to prostaglandin E1 was observed in both preadipocytes and adipocytes, but no change in responsiveness could be detected in the differentiated cells. (d) Glucagon-sensitive adenylate cyclase could not be detected in either preadipocytes or adipocytes. (e) Both preadipocytes and adipocytes possess considerable insulin binding activity, but near physiological levels of insulin stimulate the conversion of glucose to CO2 and lipid only in the differentiated cells.  相似文献   

16.
Extreme changes in sodium intake do have an effect on blood pressure of both normotensive and hypertensive individuals. Cross-population correlates of average sodium intake and mean population blood pressure are discordant with the results of studies within single populations and cannot be used as sufficient evidence to justify a reduction of dietary sodium intake in the general population to prevent hypertension. Both explanatory and management trials of sodium restriction have yielded contradictory results, and convincing evidence on the nature and size of subgroups of hypertensives with enhanced sodium sensitivity is lacking. The proportion of patients who will follow a moderately restricted sodium diet is low, unless expensive and time-consuming programs of instruction and monitoring are introduced. In light of this evidence, it is premature to recommend diets that are low in sodium as a public health measure and as initial and sole treatment of hypertension.  相似文献   

17.
After fractionation of rabbit bone marrow into erythroid cells at different developmental stages adenylate cyclase activity of membrane ghosts was assayed in the presence of sodium fluoride, catecholamines or prostaglandins E. Both basal and fluoride-stimulated adenylate cyclase decreased continuously during differentiation. Only catecholamines having beta 2-adrenergic activity stimulated adenylate cyclase and their effect was restricted to the most immature cells, the proerythroblasts and, to a lesser extent, the basophilic erythroblasts. Thus, uncoupling of beta-adrenergic receptors occurs early in erythroblast development and hormone responsiveness is lost before the final cell division. Prostaglandin E receptors and adenylate cyclase remain coupled throughout erythroid cell development.  相似文献   

18.
Responsiveness to catecholamines was studied in two different strains of rat glioma C6 cells. The C6 cells of low passage possessed a high capacity to accumulate cyclic AMP in response to (-)-isoproterenol. Cholera toxin was also able to stimulate cyclic AMP accumulation in these cells. High passage C6 cells were unresponsive to (-)-isoproterenol or to cholera toxin except in the presence of a high concentration of phosphodiesterase inhibitor. The affinity of beta-adrenergic receptors on both strains for (-) [3H] dihydroalprenolol was similar; however, C6 low passage possessed several times the number of beta-adrenergic receptors found in C6 high passage. This difference correlated with the difference found in (-)-isoproterenol-stimulated adenylate cyclase between C6 low passage and high passage. The sodium fluoride-stimulated adenylate cyclase was similar in both strains. Cyclic AMP phosphodiesterase activity was 2-3 times higher in homogenates of C6 high passage than in low passage. In intact cells, the rate of breakdown of cyclic AMP was 5-times faster in C6 high passage than in low passage. Thus, differences in beta-adrenergic receptor number and phosphodiesterase activity explain in part the lack of responsiveness of C6 high passage. Our studies indicate that continuous subculturing of rat glioma C6 cells led to complex alterations in the beta-adrenergic receptor-adenylate cyclase system.  相似文献   

19.
Functional integrity of desensitized beta-adrenergic receptors   总被引:7,自引:0,他引:7  
The adenylate cyclase-coupled beta 2-adrenergic receptor of the frog erythrocyte has served as a useful model system for elucidating the mechanisms of catecholamine-induced densensitization. In this system, it has been previously demonstrated that agonist-induced refractoriness is associated with sequestration of the beta-adrenergic receptors in vesicles away from the cell surface and from their effector unit, the adenylate cyclase system (Stadel, J.M., Strulovici, B., Nambi, P., Lavin, T.N., Briggs, M.M., Caron, M.G., and Lefkowitz, R.J. (1983) J. Biol. Chem. 258, 3032-3038). These internalized beta-adrenergic receptors appear to be structurally intact as assessed by photoaffinity labeling, but their functional status has previously been unknown. In the present studies, we sought to assess the functionality of the sequestered vesicular receptors by fusing them to Xenopus laevis erythrocytes. This cell is suitable for such studies, since it has almost no detectable beta-adrenergic receptor or catecholamine-sensitive adenylate cyclase, but contains prostaglandin E1-stimulable adenylate cyclase. Fusion of beta-adrenergic receptor-containing vesicles from desensitized frog erythrocytes with X. laevis erythrocytes results in a 30-fold stimulation of the hybrid adenylate cyclase by the beta-adrenergic agonist isoproterenol. This effect was entirely blocked by the beta-antagonist propranolol. The catecholamine-sensitive adenylate cyclase activity established in the vesicle-Xenopus hybrids showed the characteristic agonist potency series of the donor frog erythrocyte beta 2-adrenergic receptor. Fusion of vesicles from desensitized frog erythrocytes in which the beta-adrenergic receptors had been inactivated with the group specific reagent dicyclohexylcarbodiimide, or of vesicles derived from control frog erythrocytes, which contain low amounts of beta-adrenergic receptor, did not establish catecholamine-sensitive adenylate cyclase activity in the hybrids. These data demonstrate that beta-adrenergic receptors internalized during desensitization retain their functionality when recoupled to an adenylate cyclase system from a different source. The functional uncoupling of these receptors during desensitization is thus more likely due to their sequestration away from the other components of the adenylate cyclase than to any alterations in the receptors themselves.  相似文献   

20.
Incubation of slices of rat cerebral cortical grey matter in Krebs-Ringer bicarbonate-glucose buffer induced a rapid decline in the responsiveness of the adenylate cyclase in subsequently prepared membrane preparations to stimulation by various activators of the enzyme. The loss of responsiveness was time- and temperature-dependent, showed an absolute dependence on extracellular calcium ions, and was mimicked by the presence of serine proteases in the incubation medium. The resultant adenylate cyclase preparation was partially responsive to activation by fluoride and guanylylimidodiphosphate but had become virtually unresponsive to activation by ganglioside, trypsin, or beta-adrenergic agonists. The loss of responsiveness of adenylate cyclase was not altered if slices were incubated with depolarizing agents, putative neurotransmitters, receptor blockers, serine protease inhibitors, or adenosine deaminase. The nature of the calcium-dependent mechanism involved in the loss responsiveness of membranal adenylate cyclase is unknown. A suggested mechanism for the loss of sensitivity is the action of a membrane-bound, calcium-dependent protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号