首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A simple and rapid method for the reconstitution of Na+-dependent neutral amino acid transport activity from bovine renal brush border membranes is described. 2. The neutral detergent decanoyl-N-methylglucamide ('MEGA-10') was employed to solubilize the membrane protein. This obviated the necessity for a prolonged dialysis step. 3. The properties of amino acid transport in these vesicles were similar to those observed in native membranes. 4. This should be a useful procedure in the eventual identification and isolation of amino acid transport proteins.  相似文献   

2.
Solubilized Ehrlich cell plasma membrane proteins were incorporated into lipid vesicles in the presence of added phospholipid, using Sephadex G-50 chromatography combined with a freeze-thaw step. Liposomes formed in K+ exhibited high levels of Na+-dependent, alpha-aminoisobutyric acid uptake which was electrogenic and inhibited by other amino acids. The transport activity reconstituted was similar to that observed in native plasma membrane vesicles. In addition to transport by system A, leucine exchange activity (system L), Na+-dependent serine exchange activity (system ASC), and stereospecific glucose transport activity were also reconstituted. The latter was inhibited by D-glucose, D-galactose, cytochalasin B, and mercuric chloride. The medium used for reconstitution was critical for the recovery of Na+-dependent amino acid transport. The use of Na+ in the reconstitution procedure led to formation of liposomes which displayed little Na+-dependent and gradient-stimulated amino acid uptake. In contrast, all transport activities studied were efficiently reconstituted in K+ medium.  相似文献   

3.
A method for rapid reconstitution of ADP/ATP carrier from Jerusalem artichoke (Helianthus tuberosus L.) tubers mitochondria in proteoliposomes is described. The method is based on the well known property of the Amberlite resin to absorb the detergent allowing proteoliposome formation. This has been achieved by a micro-batchwise technique, using a rotating plate stirrer. An evaluation of the optimal conditions, in comparison with the more usual column method is presented. The purified ADP/ATP carrier, incorporated in proteoliposomes by this method, shows a high transport activity and a higher specific activity with respect to proteoliposomes obtained by the column procedure. Furthermore the proteoliposomal preparations are more homogeneous in size, with a diameter ranging from 300 to 350 nm. The method is suitable for the reconstitution of other membrane transport proteins.  相似文献   

4.
5.
Na+-dependent amino acid transport can be reconstituted from solubilized Ehrlich cell plasma membranes by addition of asolectin vesicles, gel filtration, and a freeze-thaw cycle. Removal of phosphatidic acid (approximately 10% of the total lipid) by Ba2+ precipitation reduces the efficiency of reconstitution of Na+-dependent amino acid transport by approximately 73% and decreases intravesicular volume of the proteoliposomes by approximately 43%. The loss of transport activity is not due to exclusion of specific proteins during reconstitution. The phosphatidic acid-free liposomes are less permeable and require more time to attain an equilibrium distribution of solute. Transport activity and intravesicular volume can be restored to Ba2+-precipitated asolectin proteoliposomes by addition of egg-phosphatidic acid during reconstitution. The extent of recovery of transport activity is proportional to the change in intravesicular volume and depends on the amount of phosphatidic acid present. Replacement of phosphatidic acid with 20% phosphatidylserine or phosphatidylglycerol leads to increases in intravesicular volume with little or no increase in amino acid transport. Generation of phosphatidic acid in situ by treatment of Ba2+-precipitated proteoliposomes with phospholipase D also restored transport. The observed increase in transport activity (9-fold) is accompanied by a 46% increase in intravesicular volume, presumably caused by vesicle fusion. Phosphatidic acid is also required for successful reconstitution of Na+-dependent amino acid transport from pure phosphatidylcholine:phosphatidylethanolamine (1:1) mixtures with only a small change (approximately 16%) in intravesicular volume. The results provide evidence for both indirect and direct effects of phosphatidic acid on reconstitution of Na+-dependent amino acid transport. The indirect effects occur through enlargement of intravesicular volume, large vesicles showing higher rates of transport. However, there is also evidence to indicate a specific effect of phosphatidic acid on the Na+-dependent amino acid transporter, since other acidic lipids may change intravesicular volume without a commensurate change in transport activity.  相似文献   

6.
System A-mediated amino acid transport activity from rat liver plasma membrane vesicles has been solubilized and reconstituted into proteoliposomes using a freeze-thaw-dilution technique. The presence of cholate, at a cholate to protein ratio of 1:1, during the freeze-thaw step resulted in an enhancement in recoverable transport activity. The carrier required both phosphatidylcholine and phosphatidylethanolamine for optimal activity, but the addition of cholesterol to the reconstitution procedure appeared to have no significant effect on the resulting activity. A lipid to protein ratio of 20:1 yielded maximal transport activity. Sonication of the proteoliposomes provided some improvement in the accuracy of replicate assays for a given proteoliposome preparation. Isolated liver plasma membrane vesicles prepared from rats treated in vivo with glucagon in combination with dexamethasone contained stimulated System A activity. This enhanced transport activity could be solubilized and recovered in proteoliposomes generated from these plasma membranes. The data support the proposal that hormone regulation of the hepatic System A gene results in the de novo synthesis and plasma membrane insertion of the carrier protein itself.  相似文献   

7.
The branched-chain amino acid transport system of Lactococcus lactis was solubilized with n-octyl beta-D-gluco-pyranoside and reconstituted into proteoliposomes. Transport activity was recovered only when solubilization was performed in the presence of acidic phospholipids. Omission of acidic phospholipids during solubilization resulted in an inactive transport protein and the activity could not be restored in the reconstitution step. Similar results have been obtained for the arginine/ornithine exchange protein from Pseudomonas aeruginosa and L. lactis. Functional reconstitution of the transport protein requires the presence of aminophospholipids or glycolipids in the liposomes (Driessen, A.J.M., Zheng, T., In't Veld, G., Op den Kamp, J.A.F. and Konings, W.N. (1988) Biochemistry 27, 865-872). We propose that during the detergent solubilization the acidic phospholipids protect the transport systems against denaturation by preventing delipidation.  相似文献   

8.
Chinese hamster ovary cells (CHO-K1) starved for 24 h for amino acids show a severalfold increase in velocity of proline transport through the A system (Vmax is five times that of unstarved cells). This increase is inhibited by cycloheximide, actinomycin D, N-methyl-alpha-amino isobutyric acid (MeAIB, a non-metabolizable specific A system amino acid analog), and by other amino acids that are generally transported by the A system. However, transport by the A system is not a prerequisite for this repression, and all compounds that have affinity for the A system do not necessarily act as "co-repressors." The addition of proline, MeAIB, or other amino acids, as described above, to derepressed cells results in a rapid decrease in A system activity. As shown with proline and MeAIB, this decrease in activity is in part due to a rapid trans-inhibition and a slow, irreversible inactivation of the A system. Neither process is inhibited by cycloheximide or actinomycin D. Alanine antagonizes the growth of CHO-K1 pro cells by preventing proline transport, and alanine-resistant mutants (alar) have been isolated (Moffett et al., Somatic Cell Genet. 9:189-213, 1983). alar2 and alar4 are partial and full constitutive mutants for the A system and have two and six times the Vmax for proline uptake by the A system, respectively. The A system in alar4 is also immune to the co-repressor-induced inactivation. Both alar2 and alar4 phenotypes are recessive. Alar3 shows an increase in Vmax and Km for proline transport through the A system, and this phenotype is codominant. All three mutants have a pleiotropic effect, producing increases in activity of the ASC and P systems of amino acid transport. This increase is not due to an increase in the Na+ gradient. The ASC and P phenotypes behave similarly to the A system in hybrids. A model has been proposed incorporating these results.  相似文献   

9.
The reconstitution of active transport by the Ca2+ -induced import of exogenous binding protein was studied in detail in whole cells of a malE deletion mutant lacking the periplasmic maltose-binding protein. A linear increase in reconstitution efficiency was observed by increasing the Ca2+ - concentration in the reconstitution mixture up to 400 mM. A sharp pH optimum around pH 7.5 was measured for reconstitution. Reconstitution efficiency was highest at 0 degree C and decreased sharply with increasing temperature. The time necessary for optimal reconstitution at 0 degree C and 250 mM Ca2+ was about 1 min. The competence for reconstitution was highest in exponentially growing cultures with cell densities up to 1 X 10(9)/ml and declined when the cells entered the stationary-growth phase. The apparent Km for maltose uptake was the same as that of wild-type cells (1 to 2 microM). Vmax at saturating maltose-binding protein concentration was 125 pmol per min per 7.5 X 10(7) cells (30% of the wild-type activity). The concentration of maltose-binding protein required for half-maximal reconstitution was about 1 mM. The reconstitution procedure appears to be generally applicable. Thus, galactose transport in Escherichia coli could also be reconstituted by its respective binding protein. Maltose transport in E. coli was restored by maltose-binding protein isolated from Salmonella typhimurium. Finally, in S. typhimurium, histidine transport was reconstituted by the addition of shock fluid containing histidine-binding protein to a hisJ deletion mutant lacking histidine-binding protein. The method is fast and general enough to be used as a screening procedure to distinguish between transport mutants in which only the binding protein is affected and those in which additional transport components are affected.  相似文献   

10.
Amino acid starvation markedly stimulates the activity of system A, a widely distributed transport route for neutral amino acids. The involvement of MAPK (mitogen-activated protein kinase) pathways in this adaptive increase of transport activity was studied in cultured human fibroblasts. In these cells, a 3-fold stimulation of system A transport activity required a 6-h amino acid-free incubation. However, a rapid tyrosine phosphorylation of ERK (extracellular regulated kinase) 1 and 2, and JNK (Jun N-terminal kinase) 1, but not of p38, was observed after the substitution of complete medium with amino acid-free saline solution. ERK1/2 activity was 4-fold enhanced after a 15-min amino acid-free incubation and maintained at stimulated values thereafter. A transient, less evident stimulation of JNK1 activity was also detected, while the activity of p38 was not affected by amino acid deprivation. PD98059, an inhibitor of ERK1/2 activation, completely suppressed the adaptive increase of system A transport activity that, conversely, was unaffected by inhibitors of other transduction pathways, such as rapamycin and wortmannin, as well as by chronic treatment with phorbol esters. In the presence of either L-proline or 2-(methylaminoisobutyric) acid, two substrates of system A, the transport increase was prevented and no sustained stimulation of ERK1/2 was observed. To identify the stimulus that maintains MAPK activation, cell volume was monitored during amino acid-free incubation. It was found that amino acid deprivation caused a progressive cell shrinkage (30% after a 6-h starvation). If proline was added to amino acid-starved, shrunken cells, normal values of cell volume were rapidly restored. However, proline-dependent volume rescue was hampered if cells were pretreated with PD98059. It is concluded that (a) the triggering of adaptive increase of system A activity requires a prolonged activation of ERK1 and 2 and that (b) cell volume changes, caused by the depletion of intracellular amino acid pool, may underlie the activation of MAPKs.  相似文献   

11.
A rapid method of reconstituting human erythrocyte sugar transport proteins   总被引:3,自引:0,他引:3  
A Carruthers  D L Melchior 《Biochemistry》1984,23(12):2712-2718
A rapid reconstitution procedure for human erythrocyte hexose transfer activity is described. The procedure (reverse-phase evaporation) avoids exposure of the isolated proteins to detergent, organic solvent, sonication, or freeze-thaw steps during insertion into synthetic membranes and may be effected within 15 min. The so-formed vesicles are unilamellar structures with a large encapsulated volume, narrow size range, and low passive permeabilities. Contamination by carry-through of endogenous (red cell) lipids is less than 1%. Reconstituted hexose transfer activity was examined by using unfractionated proteins (bands 3, 4.5, and 6) and purified proteins (bands 4.5 and 3). With unfractionated proteins, hexose transport activity is low [0.34 mumol X (mg of protein)-1 X min-1], is inhibited by cytochalasin B, and increases monotonically with protein concentration. Kinetic analysis indicates that Vmax values for both influx and efflux of D-glucose are identical. Reconstitution of the cytochalasin B binding protein (band 4.5) results in hexose transport with high specific activity [5 mumol X (mg of protein)-1 X min-1] and symmetry in transfer kinetics. Band 3 proteins also appear to mediate cytochalasin B sensitive D-glucose transport activity.  相似文献   

12.
The exocrine pancreas is rich in gamma-glutamyltranspeptidase (GGT, EC 2.3.2.2) and exhibits high rates of amino acid transport and protein synthesis. The role of the gamma-glutamyl cycle in mediating neutral amino acid transport in the isolated perfused rat pancreas was investigated using acivicin, an inhibitor of GGT, and a rapid dual isotope dilution technique. When treatment in vivo with acivicin (50 mg/kg) was followed 1 h later by continuous perfusion of the isolated pancreas with 10 microM acivicin, GGT levels decreased from 53 +/- 3 IU/g to 4.9 +/- 1.5 IU/g. This marked inhibition of GGT activity was not associated with decreased uptake for either L-alanine or L-glutamine, suggesting that the gamma-glutamyl cycle plays a negligible role in amino acid transport across the basolateral membrane of the pancreatic epithelium.  相似文献   

13.
Na+-dependent amino acid transport can be reconstituted by gel filtration of disaggregated plasma membrane and asolectin vesicles coupled to a freeze-thaw cycle. The resultant transport activity is markedly affected by the nature of the reconstitution medium. Reconstitution in K+ permits the formation of active liposomes, whereas reconstitution in Na+, Li+, or choline does not. Electron micrographs of K+ liposomes show a wide variation in liposome sizes. Ficoll density gradient fractionation of K+ liposomes shows that the largest vesicles are lipid rich, have the lowest density, and have the highest level of Na+-dependent amino acid transport. Liposomes formed in Na+ have a 34% smaller trapped volume than K+ liposomes and lack a population of large vesicles. A second freeze-thaw in K+ restores activity to Na+ liposomes which now contain large low density active vesicles. Fluorescence measurements of freeze-thaw-induced mixing of vesicle lipids indicates that the absence of large vesicles in Na+ liposomes is due to inhibition by Na+ of lipid vesicle fusion events during freezing and thawing. The large vesicle fraction is enriched in a 125-kDa peptide. It has not yet been established whether this peptide is part of the transport system for neutral amino acids.  相似文献   

14.
A new method for reconstituting acyl coenzyme A: cholesterol acyltransferase (ACAT) activity from either Chinese hamster ovary (CHO) or human fibroblast cell extracts into cholesterol-phosphatidylcholine liposomes is described. The method is rapid (less than 60 min) and easy to perform. The procedure involves solubilizing the cell extracts with deoxycholate followed by dilution into preformed liposomes. Ficoll gradient analysis demonstrated that, after reconstitution, almost all of the detectable ACAT activity co-migrated with the liposomes. Exogenous cholesterol in the liposomes was absolutely necessary for providing ACAT activity, but not for incorporation of the ACAT enzyme into the vesicle bilayer. Human fibroblast cell extracts prepared from cells grown in medium containing 10% fetal calf serum were found to contain a 10-fold higher microsomal ACAT activity compared to extracts from cells grown in 10% delipidated fetal calf serum. In contrast, when the ACAT activity from these extracts was measured using the reconstitution assay, there was no difference in the specific activities. These results support our previous work (Doolittle, G. M., and T. Y. Chang. 1982. Biochim. Biophys. Acta. 713: 529-537; and Chang, C. C. Y., et al. 1986. Biochemistry. 25: 1693-1699), and suggest that cholesterol regulates ACAT activity in CHO cells and human fibroblasts by mechanism(s) other than modulation of the amount of enzyme.  相似文献   

15.
R Bass  E Englesberg 《In vitro》1979,15(10):829-838
Optimum conditions have been established for the measurement of amino acid transport by human lymphoblastoid cell lines using a membrane-filtration technique. The parameters we found to be important for the reproducibility of the method are: the types and combination of filters, the strength of the vacuum applied to the filters and the density of the cultures at the time of harvesting and during uptake and filtration. We found that bovine serum albumin added to phosphate buffered saline (PBS) glucose in which the cells are washed, resuspended and assayed is essential for the maintenance of viability, the prevention of clumping and the retention of the accumulated amino acid. Using this procedure we have characterized two transport systems for the neutral amino acids; an A and an L system, which are similar but not identical to the A and L systems characterized in rodent cell lines. These A and L systems have characteristically lower Km's and Vm's for alanine and phenylalanine, when compared to rodent cell lines. In addition, we find alpha-AIB to be a poor competitor of alanine and phenylalanine uptake.  相似文献   

16.
The effects of glucagon on amino acid transport in rat hepatocytes are not fully understood. We examined the effect of this hormone on alanine, serine and cysteine preferring system (system ASC)-mediated amino acid transport in rat hepatocyte monolayers using 2-aminoisobutyric acid (AIB) and L -cysteine. Glucagon induced a time and protein synthesis-dependent stimulation of Na+-dependent alanine preferring system (system A)-independent AIB transport. The glucagon-induced increase in transport activity was not modified by substrate starvation and not related to changes in the intracellular pool of amino acids. Glucagon did not modify system ASC activity measured by L -cysteine. Therefore the transport activity of AIB independent of system A stimulated by glucagon cannot be attributed to system ASC. This suggests a Na+-dependent transport system in rat hepatocytes not identified until now.  相似文献   

17.
We report here on the cloning and functional characterization of the protein responsible for the system A amino acid transport activity that is known to be expressed in most mammalian tissues. This transporter, designated ATA2 for amino acid transporter A2, was cloned from rat skeletal muscle. It is distinct from the neuron-specific glutamine transporter (GlnT/ATA1). Rat ATA2 consists of 504 amino acids and bears significant homology to GlnT/ATA1 and system N (SN1). ATA2-specific mRNA is ubiquitously expressed in rat tissues. When expressed in mammalian cells, ATA2 mediates Na(+)-dependent transport of alpha-(methylamino)isobutyric acid, a specific model substrate for system A. The transporter is specific for neutral amino acids. It is pH-sensitive and Li(+)-intolerant. The Na(+):amino acid stoichiometry is 1:1. When expressed in Xenopus laevis oocytes, transport of neutral amino acids via ATA2 is associated with inward currents. The substrate-induced current is Na(+)-dependent and pH-sensitive. The amino acid transport system A is particularly known for its adaptive and hormonal regulation, and therefore the successful cloning of the protein responsible for this transport activity represents a significant step toward understanding the function and expression of this transporter in various physiological and pathological states.  相似文献   

18.
Plasma membrane suspensions of Ehrlich ascites cells solubilized with cholic acid were used to study the effects of sulfhydryl reagents on Na(+)-dependent amino acid transport. These suspensions were treated with the sulfhydryl binding agents p-chloromercuribenzenesulfonic acid or N-ethylmaleimide prior to reconstitution for the assay of transport activity. The proteoliposomes formed from dissolved membranes treated with p-chloromercuribenzenesulfonic acid showed no Na(+)-dependent alpha-aminoisobutyric acid transport, while N-ethylmaleimide pretreated membranes retained approximately 90% of the original activity. To avoid interference by the N-ethylmaleimide component, further studies were carried out with membranes pretreated with 200 microM N-ethylmaleimide prior to p-chloromercuribenzenesulfonic acid treatment. A concentration of 25 microM p-chloromercuribenzenesulfonic acid inhibited Na(+)-dependent alpha-aminoisobutyric acid transport by 50%. The degree of inhibition was dramatically reduced in the presence of substrates specific for the A transport system. Using an inhibition index to address the efficacy of inhibition in presence and absence of substrates, it could be shown that an index of 1.0 in presence of p-chloromercuribenzenesulfonic acid was reduced to 0.84 with (methylamino)isobutyric acid alone and 0.05 in the presence of 100 mM Na+ and 5 mM (methylamino)isobutyric acid. Na+ alone offered no protection. The results show that sulfhydryl group(s) on the amino acid carrier may be directly involved in substrate binding and that substrate binding sites are functional in the disaggregated membrane state. Furthermore, Na+ directly affects (methylamino)isobutyrate binding, since the degree of protection by the amino acid analogue against p-chloromercuribenzenesulfonic acid inhibition was influenced by the presence of Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neutral amino acid transport was characterized in human synovial cells. The amino acids tested are transported by all three major neutral amino acid transport systems, that is, A, L, and ASC. The model amino acid 2-aminoisobutyric acid (AIB) was found to be a strong specific substrate for system A in synovial cells. When cells were starved of amino acids, the activity of AIB transport increased, reaching a maximum within 1 h. The stimulation of transport activity was not blocked by cycloheximide and would thus appear to be related to a release from transinhibition. Similarly, the decrease in the activity of AIB transport observed after the addition of alpha-methyl-aminoisobutyric acid (meAIB) appeared to be related to transinhibition. However, using a different approach, that is, amino acid starvation followed by incubation with 10 mM meAIB and transfer to an amino acid-free medium with or without cycloheximide supplementation, a clear increase in AIB uptake, due both to derepression and a release from transinhibition, was observed. Unlike human fibroblasts, the depression of system A in these synovial cells was not serum-dependent. The process of derepression was observed only after preloading with meAIB. Neither AIB nor alanine produced this phenomenon. Moreover, alanine preloading led to a large increase in AIB transport activity due to a release from transinhibition. These observations indicate that the process of derepression and release from transinhibition are specific to the substrates present in the culture medium prior to amino acid starvation.  相似文献   

20.
Relatively little is known about the hormonal regulation of amino acid transport in the normal and diabetic exocrine pancreas. In this study unidirectional influx and tracer efflux of L-serine at the basolateral interface of the rat pancreatic epithelium was investigated in the perfused exocrine pancreas using a rapid (less than 30 s) paired-tracer dilution technique. In the non-diabetic pancreas L-serine influx was saturable and stimulated by perfusion with exogenous bovine insulin (100 microU/ml). Transport of L-serine and methylaminoisobutyric acid was markedly elevated in pancreata isolated from streptozotocin diabetic rats and insulin partially reversed the stimulation of L-serine transport induced by experimental diabetes. These results suggest that insulin and diabetes modulate the epithelial transport activity for small neutral amino acids in the intact exocrine pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号