首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myrionecta rubra and Mesodinium pulex are among the most commonly encountered planktonic ciliates in coastal marine and estuarine regions throughout the world. Despite their widespread distribution, both ciliates have received little attention by taxonomists. In order to better understand the phylogenetic position of these ciliates, we determined the SSU rRNA gene sequence from cultures of M. rubra and M. pulex. Partial sequence data were also generated from isolated cells of M. rubra from Chesapeake Bay. The M. rubra and M. pulex sequences were very divergent from all other ciliates, but shared a branch with 100% bootstrap support. Both species had numerous deletions and substitutions in their SSU rRNA gene, resulting in a long branch for the clade. This made the sequences prone to spurious phylogenetic affiliations when using simple phylogenetic methods. Maximum likelihood analysis placed M. rubra and M. pulex on the basal ciliate branch, following removal of ambiguously aligned regions. Fluorescent in situ hybridization probes were used with confocal laser scanning microscopy to confirm that these divergent sequences were both expressed in the cytoplasm and nucleolus of M. ruisra and M. pulex. We found that our sequence data matched several recently discovered unidentified eukaryotes in Genbank from diverse marine habitats, all of which had apparently been misattributed to highly divergent amoeboid organisms.  相似文献   

2.
Little is known about protists at deep‐sea hydrothermal vents. The vent sites at Guaymas Basin in the Gulf of California are characterized by dense mats of filamentous pigmented or nonpigmented Beggiatoa that serve as markers of subsurface thermochemical gradients. We constructed 18S rRNA libraries to investigate ciliate assemblages in Beggiatoa mats and from bare sediments at the Guaymas vent site. Results indicated a high diversity of ciliates, with 156 operational taxonomic units identified in 548 sequences. Comparison between mat environments demonstrated that ciliate and bacterial assemblages from pigmented mats, nonpigmented mats, and bare sediments were significantly different and highly correlated with bacterial assemblages. Neither bacterial nor ciliate assemblages were correlated with environmental factors. The most abundant ciliates at Guaymas were more likely to be represented in clone libraries from other hydrothermal, deep‐sea, and/or anoxic or microaerophilic environments, supporting the hypothesis that these ciliate species are broadly distributed. The orange mat environment included a higher proportion of ciliate sequences that were more similar to those from other environmental studies than to cultured ciliate species, whereas clone libraries from bare sediments included sequences that were the most highly divergent from all other sequences and may represent species that are endemic to Guaymas.  相似文献   

3.
The small subunit rRNA gene sequences of the karyorelictean ciliates, Loxodes striatus and Protocruzia sp., and the heterotrichian ciliates, Climacostomum virens and Eufolliculina uhligi , were used to test the evolution of nuclear dualism in the Phylum Ciliophora. Phylogenies derived using a least squares distance method, neighbour joining, and maximum parsimony demonstrate that the karyorelictean ciliates sensu Small and Lynn, 1985 do not form a monophyletic group. However, Loxodes and the heterotrich ciliates form the first branch in the ciliate lineage, and Protocruzia branches, in distance methods, basal to the spirotrich lineage. It is proposed that Protocruzia be removed from the Class Karyorelictea, and placed in closer taxonomic association with the spirotrich lineage. The distribution of nuclear division types along the phylogenetic tree is consistent with the notion that macronuclei incapable of division represent a derived rather than a primitive or "karyorelictid" character trait.  相似文献   

4.
We have used small subunit rRNA gene sequences to determine the phylogenetic relationships of species in three genera of endosymbiotic ciliates. We have confirmed that the astome Anoplophrya marylandensis is related to ciliates in the Class Oligohymenophorea, supporting the view that astomes are derived from hymenostome-like ancestors. We confirmed that Plaglotoma lumbrici, formerly considered to be a heterotrich, is a stichotrich spirotrich ciliate most closely related to Paraurostyla weissei in this analysis. Thus, the somatic polykinetids of Plagiotoma can be concluded to be cirri. We report the details of our isolation of Nyctotheroides deslierresae and Nyctotheroides parvus and confirm previous reports that these clevelandellids are related to the metopid and caenomorphid ciliates, now placed in the Class Armophorea.  相似文献   

5.
The histones H4 are known as highly conserved proteins. However, in ciliates a high degree of variation was found compared both to other eukaryotes and between the ciliate species. To date, only H4 histones of species belonging to two distantly related classes have been investigated. In order to obtain more detailed information on histone H4 variation in ciliates we undertook a comprehensive sequence analysis of PCR-amplified internal H4 fragments from 12 species belonging to seven out of the nine currently recognized ciliate classes. In addition, we used PCR primers to amplify longer fragments of H3 and H4 genes including the intergenic region. The encoded amino acid sequences reveal a high number of differences when compared with those of other eukaryotes and the ciliate species investigated. Furthermore, in some species H4 gene variants were detected, which result in amino acid differences. The greatest number of substitutions and insertions found was in the amino terminal region of the H4 histones. However, all sequences possess a conserved region corresponding to those of all other eukaryotic H4 histones. The histone gene variations were used to reconstruct phylogenetic relationships. The tree from our data matches perfectly with the ribosomal RNA data: The heterotrichs, which were considered as a late branching lineage, diverge at the base of the ciliate tree and groups formerly thought to represent ancestral lineages now appear as highly derived ciliates. Received: 4 April 1997 / Accepted: 1 August 1997  相似文献   

6.
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.  相似文献   

7.
The ciliate subclass Haptoria is a diverse taxon that includes most of the free-living predators in the class Litostomatea. Phylogenetic study of this group was initially conducted using a single molecular marker small-subunit ribosomal RNA (SSU rRNA genes). Multi-gene analysis has been limited because very few other sequences were available. We performed phylogenetic analyses of Haptoria incorporating new SSU rRNA gene sequences from several debated members of the taxon, in particular, the first molecular data from Cyclotrichium. We also provided nine large-subunit ribosomal RNA (LSU rRNA) gene sequences and 10 alpha-tubulin sequences from diverse haptorians, and two possible relatives of controversial haptorians (Plagiopylea, Prostomatea). Phylogenies inferred from the different molecules showed the following: (i) Cyclotrichium and Paraspathidium were clearly separated from the haptorids and even from class Litostomatea, rejecting their high-level taxonomic assignments based on morphology. Both genera branch instead with the classes Plagiopylea, Prostomatea and Oligohymenophora. This raises the possibility that the well-known but phylogenetically problematic cyclotrichiids Mesodinium and Myrionecta may also have affinities here, rather than with litostomes; (ii) the transfer of Trachelotractus to Litostomatea is supported, especially by the analyses of SSU rRNA and LSU rRNA genes, however, Trachelotractus and Chaenea (more uncertainly) generally form the two deepest lineages within litostomes; and (iii) phylogenies of the new molecular markers are consistent with SSU rRNA gene information in recovering order Pleurostomatida as monophyletic. However, Pleurostomatida branches cladistically within order Haptorida, as does subclass Trichostomatia (on the basis of SSU rRNA phylogenies). Our results suggest that the class-level taxonomy of ciliates is still not resolved, and also that a systematic revision of litostomes is required, beginning at high taxonomic levels (taxa currently ranked as subclasses and orders).  相似文献   

8.
The accumulation of divergent histone H4 amino acid sequences within and between ciliate lineages challenges traditional views of the evolution of this essential eukaryotic protein. We analyzed histone H4 sequences from 13 species of ciliates and compared these data with sequences from well-sampled eukaryotic clades. Ciliate histone H4s differ from one another at as many as 46% of their amino acids, in contrast with the highly conserved character of this protein in most other eukaryotes. Equally striking, we find paralogs of histone H4 within ciliate genomes that differ by up to 25% of their amino acids, whereas paralogs in other eukaryotes share identical or nearly identical amino acid sequences. Moreover, the most divergent H4 proteins within ciliates are found in the lineages with highly processed macronuclear genomes. Our analyses demonstrate that the dual nature of ciliate genomes-the presence of a "germline" micronucleus and a "somatic" macronucleus within each cell-allowed the dramatic variation in ciliate histone genes by altering functional constraints or enabling adaptive evolution of the histone H4 protein, or both.  相似文献   

9.
The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.  相似文献   

10.
The structure and variability of ciliate protozoal communities in the rumens of domestic New Zealand ruminants feeding on different diets was investigated. The relative abundance of ciliates compared with bacteria was similar across all samples. However, molecular fingerprinting of communities showed ruminant-specific differences in species composition. Community compositions of cattle were significantly influenced by diet. In contrast, diet effects in deer and sheep were weaker than the animal-to-animal variation. Cloning and sequencing of almost-full-length 18S rRNA genes from representative samples revealed that New Zealand ruminants were colonized by at least nine genera of ciliates and allowed the assignment of samples to two distinct community types. Cattle contained A-type communities, with most sequences closely related to those of the genera Polyplastron and Ostracodinium. Deer and sheep (with one exception) harboured B-type communities, with the majority of sequences belonging to the genera Epidinium and Eudiplodinium. It has been suggested that species composition of ciliate communities may impact methane formation in ruminants, with the B-type producing more methane. Therefore, manipulation of ciliate communities may be a means of mitigating methane emissions from grazing sheep and deer in New Zealand.  相似文献   

11.
Traditionally the unusual ciliate Paraspathidium has been regarded as a gymnostome haptorid (Litostomatea) based on its morphological features. In order to test this placement, the small-subunit (SSU) rRNA gene was sequenced for two isolates of Paraspathidium apofuscum and phylogenetic trees were constructed. Furthermore, the putative structure of the variable regions 2 and 4 of the SSU rRNA gene were predicted and compared with those of other ciliates. Our analyses of SSU rRNA gene sequences revealed (i) a clear separation of Paraspathidium from the haptorids and indeed the class Litostomatea, rejecting its systematic position based on morphological characters and (ii) an equally clear association with the assemblage comprising the classes Plagiopylea and Prostomatea. Putative secondary structures of the variable regions 2 and 4 of Paraspathidium are similar to those of the plagiopyleans and prostomateans but differ from the hapotrids in Helix 10, Helix E10-1 and Helix E23-5. Taken together, these results support the placement of Paraspathidium close to prostomateans and plagiopyleans, or even as a distinct group possibly at ordinal rank, within the class Plagiopylea.  相似文献   

12.
The mitochondrial cytochrome c oxidase subunit 1 (COI) gene of ciliates was first successfully sequenced in species of the genera Tetrahymena and Paramecium (Class Oligohymenophorea). The sequence of the COI gene is extremely divergent from other eukaryotes and includes an insert, which is over 300 nucleotides long. In this study, we designed a primer pair that successfully amplified the COI gene of ciliates from five different classes: Heterotrichea, Spirotrichea, Oligohymenophorea, Nassophorea and Colpodea. These classes represent the diversity of the phylum Ciliophora very well, since they are widely distributed on the ciliate small subunit rRNA tree. The amplified region is approximately 850 nucleotides long and corresponds to the general barcoding region; it also includes the insert region. In this study, 58 new COI sequences from over 38 species in 13 orders are analysed and compared, and distance trees are constructed. While the COI gene shows high divergence within ciliates, the insert region, which is present in all classes, is even more divergent. Genetic distances calculated with and without the insert region remain in the same range at the intraspecific level, but they differ considerably at or above genus level. This suggests that the entire barcoding region is under similar selective constraints and that the evolutionary rate of the ciliate COI is extremely high and shows unequal rate variation. Although many problems still remain regarding standardization of barcoding methods in ciliates, the development of a universal or almost universal primer combination for the Phylum Ciliophora represents important progress. As shown in four examples, the resolution of COI at the intraspecific level is much greater than that of any nuclear genes and shows great potential to (1) identify species based on molecular data if a reliable database exists, and (2) resolve the relationships of closely related ciliate taxa and uncover cryptic species.  相似文献   

13.
Rumen ciliate-associated bacteria and methanogenic archaea were analyzed by a 16S rRNA gene retrieved from a single cell of Polyplastron multivesiculatum, Isotricha intestinalis, and Ophryoscolex purkynjei. Rumen fluid was taken from a ruminally fistulated goat to prepare a ciliate fraction. Ciliate mixtures were incubated under mixtures of antibiotics for 48 h to eliminate extracellular bacteria. Individual cells of rumen ciliates were selected under microscopic observation after fixation with ethanol. Bacterial and archaeal 16S rRNA gene sequences were retrieved from each cell of three genera of ciliate. Two archaeal sequences related to Methanobrevibacter smithii were distributed to nearly all ciliate cells tested. These two methanogenic archaea were likely to be endosymbiotic methanogens commonly carried by the rumen ciliate, although some other sequences similar to the other genera were detected. A range of proteobacteria was retrieved from cells of P. multivesiculatum. Some sequences showed similarities to the previously known endosymbiotic proteobacteria. However, there were no proteobacteria that were carried by all the ciliate cells tested.  相似文献   

14.
Translation is carried out by the ribosome and several associated protein factors through three consecutive steps: initiation, elongation, and termination. Termination remains the least understood of them, partly because of the nonuniversality of the factors involved. To get some insights on the evolution of eukaryotic translation termination, we have compared the phylogeny of the release factors eRF1 and eRF3 to that of the elongation factors EF-1alpha and EF-2, with special focus on ciliates. Our results show that these four translation proteins have experienced different modes of evolution. This is especially evident for the EF-1alpha, EF-2, and eRF1 ciliate sequences. Ciliates appear as monophyletic in the EF-2 phylogenetic tree but not in the EF-1alpha and eRF1 phylogenetic trees. This seems to be mainly because of phylogeny reconstruction artifacts (the long-branch attraction) produced by the acceleration of evolutionary rate of ciliate EF-1alpha and eRF1 sequences. Interaction with the highly divergent actin found in ciliates, or on the contrary, loss of interaction, could explain the acceleration of the evolutionary rate of the EF-1alpha sequences. In the case of ciliate eRF1 sequences, their unusually high evolutionary rate may be related to the deviations in the genetic code usage found in diverse ciliates. These deviations involve a relaxation (or even abolition) of the recognition of one or two stop codons by eRF1. To achieve this, structural changes in eRF1 are needed, and this may affect its evolutionary rate. Eukaryotic translation seems to have followed a mosaic evolution, with its different elements governed by different selective pressures. However, a correlation analysis shows that, beneath the disagreement shown by the different translation proteins, their concerted evolution can still be made apparent when they are compared with other proteins that are not involved in translation.  相似文献   

15.
Compared with other ciliated protozoa, molecular studies of phylogenetic relationships within the subclass Suctoria are rare. In this work, phylogenetic analyses focusing on this group were performed based on all data available. In addition, the small subunit ribosomal RNA (SSU rRNA) genes of three suctorian ciliates (Acineta compressa, Acineta tuberosa and Paracineta limbata) were newly sequenced. Furthermore, the putative secondary structures of the variable region 2 of the SSU rRNA gene were predicted and compared within the Suctoria. Our results show that (i) there is support for the monophyly of the subclass Suctoria, which is a sister clade to the cyrtophorids; (ii) based on combined morphologic and molecular features, we propose the following evolutionary routine within the Suctoria: Exogenina – Evaginogenina – Endogenina; (iii) the similarities of the secondary structures of the V2 region and the SSU rRNA gene sequences within the subclass Suctoria are consistent with the branching of the phylogenetic lineages.  相似文献   

16.
The elongation factor 1 alpha (EF-1 alpha) has become widely employed as a phylogenetic marker for studying eukaryotic evolution. However, a disturbing problem, the artifactual polyphyly of ciliates, is always observed. It has been suggested that the addition of new sequences will help to circumvent this problem. Thus, we have determined 15 new ciliate EF-1 alpha sequences, providing for a more comprehensive taxonomic sampling of this phylum. These sequences have been analyzed together with a representation of eukaryotic sequences using distance-, parsimony-, and likelihood-based phylogenetic methods. Such analyses again failed to recover the monophyly of Ciliophora. A study of the substitution rate showed that ciliate EF-1 alpha genes exhibit a high evolutionary rate, produced in part by an increased number of variable positions. This acceleration could be related to alterations of the accessory functions acquired by this protein, likely to those involving interactions with the cytoskeleton, which is very modified in the Ciliophora. The high evolutionary rate of these sequences leads to an artificial basal emergence of some ciliates in the eukaryotic tree by effecting a long-branch attraction artifact that produces an asymmetric topology for the basal region of the tree. The use of a maximum-likelihood phylogenetic method (which is less sensitive to long-branch attraction) and the addition of sequences to break long branches allow retrieval of more symmetric topologies, which suggests that the asymmetric part of the tree is most likely artifactual. Therefore, the sole reliable part of the tree appears to correspond to the apical symmetric region. These kinds of observations suggest that the general eukaryotic evolution might have consisted of a massive radiation followed by an increase in the evolutionary rates of certain groups that emerge artificially as early branches in the asymmetric base of the tree. Ciliates in the case of the EF-1 alpha genes would offer clear evidence for this hypothesis.  相似文献   

17.
Distinctive organic-walled resting cysts of at least three different types with a highly conservative morphology appear to characterize specific orders or groups of genera within the Class Polyhymenophorea (Protozoa, Ciliophora), contrasting markedly with the great diversity of form seen in trophic stages. Polyhymenophorean ciliates have been considered in the past to form a cohesive class within the Phylum Ciliophora and, possibly, to represent the pinnacle of ciliate evolution. Evidence from cysts challenges the cohesive nature of the class, suggesting that the hypotrichs should be subdivided and that they have a different phylogenetic origin from the heterotrichs, tintinnids, and oligotrichs.  相似文献   

18.
Summary The small subunit ribosomal RNA (16S-like rRNA) coding regions of the hypotrichous ciliatesOnychodromus quadricornutus andOxytricha granulifera were amplified using polymerase chain reaction techniques. Complete sequences were determined for the amplified genes and compared to those of other ciliated protozoa. In phylogenetic trees inferred using distance matrix methods oxytrichids are not seen as a cohesive phylogenetic group.Oxytricha nova is most closely related toStylonychia pustulata in a lineage that also includesO. quadricornutus. This phylogeny contradicts phylogenetic schemes in whichOnychodromus is considered to be a primitive hypotrichous ciliate and suggests thatO. nova was misidentified as members of the genusOxytricha.  相似文献   

19.
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.  相似文献   

20.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号