首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydraulic lift: consequences of water efflux from the roots of plants   总被引:29,自引:0,他引:29  
Hydraulic lift is the passive movement of water from roots into soil layers with lower water potential, while other parts of the root system in moister soil layers, usually at depth, are absorbing water. Here, we review the brief history of laboratory and field evidence supporting this phenomenon and discuss some of the consequences of this below-ground behavior for the ecology of plants. Hydraulic lift has been shown in a relatively small number of species (27 species of herbs, grasses, shrubs, and trees), but there is no fundamental reason why it should not be more common as long as active root systems are spanning a gradient in soil water potential (Ψs) and that the resistance to water loss from roots is low. While the majority of documented cases of hydraulic lift in the field are for semiarid and arid land species inhabiting desert and steppe environments, recent studies indicate that hydraulic lift is not restricted to these species or regions. Large quantities of water, amounting to an appreciable fraction of daily transpiration, are lifted at night. This temporary partial rehydration of upper soil layers provides a source of water, along with soil moisture deeper in the profile, for transpiration the following day and, under conditions of high atmospheric demand, can substantially facilitate water movement through the soil-plant-atmosphere system. Release of water into the upper soil layers has been shown to afford the opportunity for neighboring plants to utilize this source of water. Also, because soils tend to dry from the surface downward and nutrients are usually most plentiful in the upper soil layers, lifted water may provide moisture that facilitates favorable biogeochemical conditions for enhancing mineral nutrient availability, microbial processes, and the acquisition of nutrients by roots. Hydraulic lift may also prolong or enhance fine-root activity by keeping them hydrated. Such indirect benefits of hydraulic lift may have been the primary selective force in the evolution of this process. Alternatively, hydraulic lift may simply be the consequence of roots not possessing true rectifying properties (i.e., roots are leaky to water). Finally, the direction of water movement may also be downward or horizontal if the prevailing Ψs gradient so dictates, i.e., inverse, or lateral, hydraulic lift. Such downward movement through the root system may allow growth of roots in otherwise dry soil at depth, permitting the establishment of many phreatophytic species. Received: 2 June 1997 / Accepted: 24 September 1997  相似文献   

2.
Water uptake profile response of corn to soil moisture depletion   总被引:6,自引:1,他引:5  
The effects of soil moisture distribution on water uptake of drip‐irrigated corn were investigated by simultaneously monitoring the diurnal evolution of sap flow rate in stems, of leaf water potential, and of soil moisture, during intervals between successive irrigations. The results invalidate the steady‐state resistive flow model for the continuum. High hydraulic capacitance of wet soil and low hydraulic conductivity of dry soil surrounding the roots damped significantly diurnal fluctuations of water flow from bulk soil to root surface. By contrast, sap flow responded directly to the large diurnal variation of leaf water potential. In wet soil, the relation between the diurnal courses of uptake rates and leaf water potential was linear. Water potential at the root surface remained nearly constant and uniformly distributed. The slope of the lines allowed calculating the resistance of the hydraulic path in the plant. Resistances increased in inverse relation with root length density. Soil desiccation induced a diurnal variation of water potential at the root surface, the minimum occurring in the late afternoon. The increase of root surface water potential with depth was directly linked to the soil desiccation profile. The development of a water potential gradient at the root surface implies the presence of a significant axial resistance in the root hydraulic path that explains why the desiccation of the soil upper layer induces an absolute increase of water uptake rates from the deeper wet layers.  相似文献   

3.
4.
Root distribution determines largely the zone of soil that roots have access to for water and nutrient uptake, and is of great importance especially if water and fertilizer input is restricted. Mechanical impedance is the major limitation to root elongation in many field soils. Until now, experiments have focused largely on the axial resistance to root growth. In a fascinating study of the radial forces exerted by the roots of chickpea, root extension, diameter change, and the radial forces that axially unimpeded roots exert are reported: Kolb et al. (this volume) record radial stresses of about 0.3?MPa that are broadly consistent with cell turgor pressures, but, interestingly, find no restriction to axial elongation. This result is in marked contrast to large decreases in elongation of pea radicles resulting from much smaller axial pressures reported elsewhere in the literature (e.g., an 85?% decrease in root elongation in response to axial pressures of?<?0.1?MPa). The situation is different also from that in homogeneous soil, where root penetration resistance pressures of 0.4-1.0?MPa are typically required to halt root elongation. Soil structure and strength properties will determine the balance of axial and radial pressures on an individual root tip, and hence the root elongation response. It appears that a degree of radial confinement may help roots to extend axially into hard soil. This result also complements recent findings that in strong field soils the availability of soil macropores has a large influence on regulating the root-elongation rates of seedlings.  相似文献   

5.
Water flow through junctions in Douglas-fir roots   总被引:4,自引:0,他引:4  
Roots are important conduits for the redistribution of water within the rooting zone. Root systems are often highly branched, and water flow between regions undoubtedly involves passage through junctions between individual roots. This study considered junctions in the roots of Douglas-fir with regard to the resistances encountered by water flow through the xylem. Flow into the root branch distally along the main root encountered much greater resistance than flow into the branch and proximally along the main root (toward the plant stem). When the main root proximal to the junction was gradually shortened, the resistance to flow in the branch root and distally along the main root increased dramatically. Thus, flow in this manner appears to depend on lateral flow within the root over many centimetres proximal to the junction and not just within the direct connection at the junction. These results suggest that the hydraulic nature of junctions is an important aspect of hydraulic redistribution of water within the soil utilizing flow through roots.  相似文献   

6.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

7.
Senock  R.S.  Leuschner  C. 《Plant and Soil》1999,208(1):57-71
Field measurements of water flux in small diameter roots are important to the study of whole plant water transport systems. Miniature sap flow gauges were used to capture high resolution water flux patterns in small roots of 2 – 5 mm diameter and simultaneously in the canopy branches of a Eucalyptus saligna tree growing in Hawaii. The axial transport flux rates were then correlated with anatomical measurements to describe the internal hydraulic capacity of the tree. The daily patterns of water flux showed a strong coupling between the canopy and root systems and both systems were tightly synchronized with rapid fluctuations in photosynthetic photon flux density, vapour pressure deficit, and wind speed. When flow rates were normalized by the total vessel lumen area, branches had daily totals equivalent to the surface roots. Daily flows of water through surface roots were consistently 30% greater than through deep roots. Results of an experiment where a portion of the canopy was removed showed the decrease in water flux for all roots was in nearly direct proportion to the decrease in leaf area. The root anatomical measurements suggested a high capacity axial root water transport system with roots containing a smaller number of vessels per unit of sapwood area than branches but with vessel diameters twice that of the branches. However, relative conductivity values of roots and branches were similar and comparable to some of the highest values reported. Overall, the results suggested a highly efficient axial water transport system that would help to maintain a favorable plant water status for maximal stomatal opening. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
根据土壤-根系统中水分守恒和水势对水分运输作用的原理, 建立了土壤中非均匀水势作物根系吸水模型。在该模型中, 分别对一次函数和指数函数两种不同的非均匀土壤水势的表达形式建立模型, 并对非均匀水势和均匀水势下模型的解析解之间的关系进行了探讨; 利用该模型讨论根系的吸收阻力和木质部传导阻力的比率对根吸水的影响; 运用阻力比率的合理生理范围确定根生长的优化长度。结果表明: 在特定情况下, 非均匀水势下的根系吸水模型可以用于均匀水势, 对Poiseuille公式进行修正后得到的根的优化长度接近实际值。  相似文献   

9.
A biophysical analysis of root growth under mechanical stress   总被引:13,自引:0,他引:13  
Bengough  A.G.  Croser  C.  Pritchard  J. 《Plant and Soil》1997,189(1):155-164
The factors controlling root growth in hard soils are reviewed alongside summarised results from our recent studies. The turgor in cells in the elongation zone of roots pushes the apex forward, resisted by the external pressure of the soil and the tension in the cell walls. The external pressure of the soil consists of the pressure required to deform the soil, plus a component of frictional resistance between the root and soil. This frictional component is probably small due to the continuous sloughing of root cap cells forming a low-friction lining surrounding the root. Mechanically impeded roots are not only thicker, but are differently shaped, continuing to increase in diameter for a greater distance behind the root tip than in unimpeded roots. The osmotic potential decreases in mechanically impeded roots, possibly due to accumulation of solutes as a result of the slower root extension rate. This more negative osmotic potential is not always translated into increased turgor pressure, and the reasons for this require further investigation. The persistent effect of mechanical impedance on root growth is associated with both a stiffening of cell walls in the axial direction, and with a slowing of the rate of cell production.  相似文献   

10.
Deep root systems that extend into moist soil can significantly increase plant productivity. Here, the components of soil-grown root systems of wheat, barley and triticale are characterized, and types and water conducting potential of deep roots in the field are assessed. Root system components were characterized in plants grown in soil in PVC tubes, based on their origin and number and the arrangement of xylem tracheary elements (XTE) viewed using fluorescence microscopy. A new nomenclature is proposed. Deep roots were harvested in the field, and root types of the current crop and remnant roots from previous crops were identified by fluorescence and cryo-scanning electron microscopy. Four types of axile (framework) and five types of branch root were distinguished in the three cereals. Six per cent of deep roots were axile roots that originated from the base of the embryo; 94% were branch roots, of which 48% had only two XTE (10 microm diameter), and thus potentially low axial flow. Only 30% of roots in the cores were from the current crop, the remainder being remnants. Selection for more deep-penetrating axile roots and increased vascular capacity of deep branches is of potential benefit. Conventional root-length density measurements should be interpreted and applied cautiously.  相似文献   

11.
Transverse hydraulic redistribution by a grapevine   总被引:4,自引:0,他引:4  
Root hydraulic redistribution has been shown to occur in numerous plant species under both field and laboratory conditions. To date, such water redistribution has been demonstrated in two fundamental ways, either lifting water from deep edaphic sources to dry surface soils or redistributing water downward (reverse flow) when inverted soil Ψs gradients exist. The importance of hydraulic redistribution is not well documented in agricultural ecosystems under field conditions, and would be important because water availability can be temporally and spatially constrained. Herein we report that a North American grapevine hybrid (Vitis riparia × V. berlandieri cv 420 A) growing in an agricultural ecosystem can redistribute water from a restricted zone of available water under a drip irrigation emitter, laterally across the high resistance pathways of the trunk and into roots and soils on the non-irrigated side. Deuterium-labelled water was used to demonstrate lateral movement across the vine's trunk and reverse flow into roots. Water redistribution from the zone of available water and into roots distant from the source occurred within a relatively short time frame of 36 h, although overnight deposition into rhizosphere soils around the roots was not detected. Deuterium was eventually detected in rhizosphere soils adjacent to roots on the non-irrigated side after 7 d. Application of identical amounts of water with the same deuterium enrichment level (2%) to soils without grapevine roots showed that physical transport of water through the vapour phase could not account for either downward or transverse movement of the label. These results confirmed that root presence facilitated the transport of label into soils distant from the wetted zone. When deuterium-labelled water was allowed to flow directly into the trunk above the root–trunk interface, reverse flow occurred and lateral movement across the trunk and into roots originating around the collar region did not encounter large disproportionate resistances. Rapid redistribution of water into the entire root system may have important implications for woody perennial cultivars growing where water availability is spatially heterogeneous. Under the predominantly dry soil conditions studied in this investigation, water redistributed into roots may extend root longevity and increase the vines water capacitance during periods of high transpiration demand. These benefits would be enhanced by diminished water loss from roots, and could be equally important to other cited benefits of hydraulic redistribution into soils such as enhancement of nutrient acquisition.  相似文献   

12.
1. Constant-power heat-balance sap flow gauges were used to compare sap flow in vertical and lateral roots of Grevillea robusta trees growing without access to ground water at a semiarid site in Kenya.
2. Reversal of sap flow occurred when root systems crossed gradients in soil water potential. Measurement of changes in the direction of flow was possible because of the symmetrical construction of the sap flow gauges; gradients in temperature across the gauges, and thus computed rates of sap flow, changed sign when reverse flow occurred.
3. Reverse flow in roots descending vertically from the base of the tree occurred, while uptake by lateral roots continued, when the top of the soil profile was wetter than the subsoil. The transfer of water downwards by root systems, from high to low soil water potential, was termed 'downward siphoning'; this is the reverse of hydraulic lift.
4. Downward siphoning was induced by the first rain at the end of the dry season and by irrigation of the soil surface during a dry period.
5. Downward siphoning may be an important component of the soil water balance where there are large gradients in water potential across root systems, from a wet soil surface downwards. By transferring water beyond the reach of shallow-rooted neighbours, downward siphoning may enhance the competitiveness of deep-rooted perennials.  相似文献   

13.
Abstract. A model of water flow from the soil into the plant, and from the plant to the atmosphere is described. There are three state variables in the model: the soil, root and shoot water contents. The flow rate of water from the soil to the root is calculated by dividing the gradient in water potential by a resistance, comprising the resistance from the bulk soil to the root surface, and that from the root surface to the root interior. The resistance in the soil depends on the soil hydraulic conductivity, which in turn depends on the soil water potential. The flow rate from the root to the shoot is given by the gradient in water potential divided by a resistance, which depends on the structural dry mass of the plant. Transpiration is described by the Penman-Monteith equation. The plant water characteristics can be modified to take account of osmotic and cell wall rigidity parameters. The model incorporates the concept of shoot/root ‘messages’ of water stress, which influence stomatal conductance. The message works through the generation of a hormone as the pressure potential in the shoot (mesophyll) or root falls. This hormone induces a shift of osmoticum from the guard cells to the surrounding mesophyll cells, which causes an increase (i.e. closer to zero) in the osmotic potential in these cells. This, in turn, causes a decrease in their pressure potential, and so reduces stomatal conductance. The model is used as a framework to address some of the issues that have recently been raised concerning the role of water potential in describing water flow through plants. We conclude that, with the hormone present, there is unlikely to be a unique relationship between stomatal conductance and shoot total water potential, since stomatal conductance depends on the pressure potential in the guard cells, which may differ from that in other cells. Nevertheless, this does not imply that water potential is not an important, and indeed fundamental, component for describing water flow through plants. Other aspects of water flow through plants are also considered, such as diurnal patterns of shoot, root and soil water potential components. It is seen that these may differ from the commonly held view that, as the soil dries down, they all attain the same values during the dark period, and which, as we show, is largely unsubstantiated either theoretically or experimentally.  相似文献   

14.
Soybean (Glycine max) was grown with root systems divided between adjacent cartons containing nutrient solution or soil. By adding polyethylene glycol (Carbowax 6000) to reduce solute potential or withholding water to reduce soil matric potential until water absorption from that side stopped, the root xylem water potential could be ascertained. Carbowax appeared to increase root resistance. An imbalance technique is described with which soil moisture contents of adjacent containers were followed individually. The patterns of water absorption obtained following repeated additions of water or addition of CaCl2 solutions to one side indicated soil hydraulic conductivity became limiting at a soil water potential of −2 bars. A high concentration of CaCl2 added to one side greatly reduced transpiration and produced severe plant injury. With part of the root system developing in nutrient solution, growth of roots into and water absorption from soil were slow; however, reduction of solute potential in the solution side greatly increased water absorption from the soil side.  相似文献   

15.
The importance of macrostructure to root growth of ryegrass (L. perenne) seedlings sown on the soil surface was studied in two soils in which the macrostructure had resulted mainly from root growth and macro-faunal activity. Sets of paired soil cores were used, one of each pair undisturbed and the other ground and repacked to the field bulk density. Undisturbed and repacked soils were first compared at equal water potentials in the range −1.9 to −300 kPa. At equal water potential, the undisturbed soil always had the greater strength (penetration resistance), and root growth was always greater in the repacked soil with no macrostructure than it was in the soil with macrostructure intact. At equal high strength (low water potentials) it appeared that root growth was better when soils were structured. When strength was low (high water potentials), root growth was better in the unstructured soil. Soils were then compared during drying cycles over 21 days. The average rate at which roots grew to a depth of 60 mm, and also the final percentage of plants with a root reaching 60 mm depth, was greatest in repacked soils without macrostructure. The species of vegetation growing in the soil before the experiment affected root growth in undisturbed soil; growth was slower where annual grasses and white clover had grown compared with soil which had supported a perennial grass. It appears that relatively few roots locate and grow in the macrostructure. Other roots grow in the matrix, if it is soft enough to be deformed by roots. Roots in the matrix of a structured soil grow more slowly than roots in structureless soil of equal bulk density and water potential. The development of macrostructure in an otherwise structureless soil, of the type studied, is of no advantage to most roots. However, once a macrostructure has developed, the few roots locating suitable macropores are able to grow at low water potential when soil strength is high. The importance of macrostructure to establishing seedlings in the field lies in rapid penetration of at least a few roots to a depth that escapes surface drying during seasonal drought. ei]{gnB E}{fnClothier}  相似文献   

16.
The significance of soil water redistribution facilitated by roots (an extension of "hydraulic lift", here termed hydraulic redistribution) was assessed for a stand of Artemisia tridentata using measurements and a simulation model. The model incorporated water movement within the soil via unsaturated flow and hydraulic redistribution and soil water loss from transpiration. The model used Buckingham-Darcy's law for unsaturated flow while hydraulic redistribution was developed as a function of the distribution of active roots, root conductance for water, and relative soil-root (rhizosphere) conductance for water. Simulations were conducted to compare model predictions with time courses of soil water potential at several depths, and to evaluate the importance of root distribution, soil hydraulic conductance and root xylem conductance on transpiration rates and the dynamics of soil water. The model was able to effectively predict soil water potential during a summer drying cycle, and the rapid redistribution of water down to 1.5 m into the soil column after rainfall events. Results of simulations indicated that hydraulic redistribution could increase whole canopy transpiration over a 100-day drying cycle. While the increase was only 3.5% over the entire 100-day period, hydraulic redistribution increased transpiration up to 20.5% for some days. The presence of high soil water content within the lower rooting zone appears to be necessary for sizeable increases in transpiration due to hydraulic redistribution. Simulation results also indicated that root distributions with roots concentrated in shallow soil layers experienced the greatest increase in transpiration due to hydraulic redistribution. This redistribution had much less effect on transpiration with more uniform root distributions, higher soil hydraulic conductivity and lower root conductivity. Simulation results indicated that redistribution of water by roots can be an important component in soil water dynamics, and the model presented here provides a useful approach to incorporating hydraulic redistribution into larger models of soil processes.  相似文献   

17.
Mechanics of root growth   总被引:4,自引:1,他引:3  
Summary A model is developed for the rate of elongation of a root tip in terms of the balance of pressures acting on the root. Differentials of this equation give expressions for the changes in root elongation rate with respect to soil water potential and soil mechanical resistance. The model predicts that root cells osmoregulate against both water stress and soil mechanical resistance with predicts that root cells osmoregulate against both water stress and soil mechanical resistance with similar efficiencies which are less than 100%. Analysis of published data leads to the conclusion that root tips of pea osmoregulate with 70% efficiency. A working equation is developed for the elongation rate of roots in conditions of combined water stress and mechanical resistance.  相似文献   

18.
The root system of mature wheat Triticum aestivum Marts Doveis dominated by the 7 to 15 adventitious roots which emergefrom the perimeter of the stem base, pointing radially outwardsand downwards. The basal, coronal region of these roots is thickand unbranched, attached to a rhizosheath of earth by a densecovering of root hairs and stiffened in bending by lignificationof outer layers of the cortex. Root lodging of plants involves bending of the coronal rootsat their base and axial movement of leeward and windward rootsthrough the soil; their resistance to these motions providemoments resisting lodging. A model of anchorage was producedby summing the resistance of each root to both forms of motionto give two anchorage components. The model was tested in aseries of mechanical experiments in which simulated lodgingwas followed by loading of individual roots; results supportedthe anchorage model and suggested that in the experimental conditionsthe two components of anchorage were approximately equal inmagnitude. The stem was about 30% stronger than the anchoragesystem. The coronal anchorage roots made up 4.4% of total dry mass;it is suggested that anchorage could be improved either by increasinginvestment in this region or by altering root orientation. Sequentialdevelopment of seminal and adventitious root systems is relatedto the changes in anchorage requirement with age.  相似文献   

19.
Resistance to Water Flow in the Seminal Roots of Wheat   总被引:2,自引:0,他引:2  
Water uptake by the seminal root system of wheat is describedby a model which incorporates radial and axial resistance toflow in the root and the resistance to flow in the soil. Inan experiment where wheat plants were dependent on subsoil waterextracted from below 45 cm by one, three, or five seminal roots,calculations indicated that the axial resistance was the dominantresistance within the soil-root system and that flow rate changedpredictably with changing axial resistance. The model also indicatedthat the observed shape of the metaxylem vessel in the seminalaxes has important effects on the pattern of water uptake.  相似文献   

20.
Roots of plants growing in dry soil often experience large mechanical impedance because the decreased soil water content is associated with increased in soil strength. The combined effect of mechanical impedance and water stress hinders the establishment of seedlings in many soils, but little is known about the interaction between these two stresses. A method has been designed that, for the first time, measured the maximum axial force exerted by a root growing under controlled water stress. Using this technique the axial force exerted by a pea radicle was measured using a shear beam, while the seedling was suspended in an aerate solution of polyethylene glycol 20 000 at osmotic potentials between 0 and -0.45 MPa. The maximum growth force was then divided by the cross-sectional area of the root to give the maximum axial growth pressure. The value of maximum axial growth pressure decreased linearly from 0.66 and 0.35 MPa as the osmotic potentials of the solution of PEG decreased from 0 to -0.45 MPa. In dry soil, therefore, the maximum strength of soil that a root can penetrate is decreased because of the decrease in maximum growth pressure. The elongation rates of unimpeded roots were similar whether the roots were subject to either a matric potential in soil or to an osmotic potential in a solution of PEG.Key words: Pisum sativum L, pea, mechanical impedance, axial growth pressure, water stress, PEG 20 000.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号