首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Catalase is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. From the cDNA sequences of three rice (Oryza sativa L.) genes that encode for predicted catalases (OsCatA, OsCatB, and OsCatC), complete ORFs were subcloned into pET21a and expressed as (His)(6)-tagged proteins in Escherichia coli. The recombinant (His)(6)-polypeptides were enriched to apparent homogeneity and characterized. With H(2)O(2) as substrate, the highest catalase k(cat) value (20±1.71×10(-3) min(-1)) was found in recombinant OsCatB. The optimum temperatures for catalase activity were 30 °C for OsCatA and OsCatC and 25 °C for OsCatB, while the pH optima were 8.0, 7.5, and 7.0 for OsCatA, OsCatB, and OsCatC respectively. All the catalases were inhibited by sodium azide, β-mercaptoethanol, and potassium cyanide, but only weakly by 3-amino-1,2,4-triazole. The various catalases exhibited different catalase activities in the presence of different salts at different concentrations, OsCatC showing higher salt inhibitory effects than the two other OsCats.  相似文献   

4.
Based on amino acid sequence similarities between the methylated elongation factor EF-Tu from Escherichia coli and the EF-Tu from Euglena gracilis chloroplast, we predicted that the latter could also be methylated in the presence of an appropriate methyltransferase. We found that, as reported for the eubacterial homologous protein, the organellar factor could be methylated in vivo and in vitro to yield monomethyllysine.  相似文献   

5.
The protein synthesis elongation factor, EF-Tu, is a protein that carries aminoacyl-tRNA to the A-site of the ribosome during the elongation phase of protein synthesis. In maize (Zea mays L) this protein has been implicated in heat tolerance, and it has been hypothesized that EF-Tu confers heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation and inactivation. In this study we investigated the effect of the recombinant precursor of maize EF-Tu (pre-EF-Tu) on thermal aggregation and inactivation of the heat-labile proteins, citrate synthase and malate dehydrogenase. The recombinant pre-EF-Tu was purified from Escherichia coli expressing this protein, and mass spectrometry confirmed that the isolated protein was indeed maize EF-Tu. The purified protein was capable of binding GDP (indicative of protein activity) and was stable at 45 degrees C, the highest temperature used in this study to test this protein for possible chaperone activity. Importantly, the recombinant maize pre-EF-Tu displayed chaperone activity. It protected citrate synthase and malate dehydrogenase from thermal aggregation and inactivation. To our knowledge, this is the first observation of chaperone activity by a plant/eukaryotic pre-EF-Tu protein. The results of this study support the hypothesis that maize EF-Tu plays a role in heat tolerance by acting as a molecular chaperone and protecting chloroplast proteins from thermal aggregation and inactivation.  相似文献   

6.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   

7.
8.
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize (Zea mays). Chloroplast EF-Tu is highly conserved, and it is possible that this protein may be of importance to heat tolerance in other species including wheat (Triticum aestivum). In this study, we assessed heat tolerance and determined the relative levels of EF-Tu in mature plants (at flowering stage) of 12 cultivars of winter wheat experiencing a 16-d-long heat treatment (36/30 degrees C, day/night temperature). In addition, we also investigated the expression of EF-Tu in young plants experiencing a short-term heat shock (4h at 43 degrees C). Heat tolerance was assessed by examining the stability of thylakoid membranes, measuring chlorophyll content, and assessing plant growth traits (shoot dry mass, plant height, tiller number, and ear number). In mature plants, relative levels of EF-Tu were determined after 7 d of heat stress. High temperature-induced accumulation of EF-Tu in mature plants of all cultivars, and a group of cultivars that showed greater accumulation of EF-Tu displayed better tolerance to heat stress. Young plants of all cultivars but one did not show significant increases in the relative levels of EF-Tu. The results of the study suggest that EF-Tu protein may play a role in heat tolerance in winter wheat.  相似文献   

9.
10.
11.
12.
13.
14.
15.
水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆   总被引:29,自引:2,他引:29  
电子克隆是基因克隆的新策略,以小麦胞质葡萄糖-6-磷酸脱氢酶cDNA(Tagpdl克隆)序列为信息探针,在GenBank水稻nr数据库中找到高度同源的水稻基因组序列,通过人工序列拼接及RT-PCR确认得到了水稻该基因的全长cDNA序列,命名为OsG6PDH,OsG6PDH与小麦Tagpdl克隆的DNA一致率为88%,推导的氨基酸序列与小麦,番茄,烟草的胞质葡萄糖-6-磷酸脱氢酶基因的一致率分别为89%,79%,80%,经RT-PCR表达谱分析,OsG6PDH在水稻幼穗,胚,根,叶中都有表达,在幼穗与根中表达略高,另外,讨论了利用水稻基因组信息的电子克隆方法克隆水稻功能基因的可行性。  相似文献   

16.
Two genes were isolated from a rice genomic library and the coding region of their corresponding cDNAs generated by RT-PCR. These single copy genes, designated ORYsa;Sultr1;1 and ORYsa;Sultr4;1, encode putative sulfate transporters. Both genes encode proteins with predicted topologies and signature sequences of the H+/SO42- symporter family of transporters and exhibit a high degree of homology to other plant sulfate transporters. ORYsa;Sultr1;1 is expressed in roots with levels of expression being strongly enhanced by sulfate starvation. In situ hybridization experiments revealed that ORYsa;Sultr1;1 expression is localized to the main absorptive region of roots. This gene probably encodes a transporter that is responsible for uptake of sulfate from the soil solution. In contrast, ORYsa;Sultr4;1 was expressed in both roots and shoots and was unresponsive to the sulfur status of the plant. The sequence of ORYsa;Sultr4;1 contains a possible plastid-targeting transit peptide which may indicate a role in transport of sulfate to sites of sulfate reduction in plastids. The role of the transporter encoded by ORYsa;Sultr4;1 is likely to be significantly different fromORYsa;Sultr1;1. These are the first reports of isolation of genes encoding sulfate transporters from rice and provide a basis for further studies involving sulfate transport.  相似文献   

17.
The complicated genetic pathway regulates the developmental programs of male reproductive organ, anther tissues. To understand these molecular mechanisms, we performed cDNA microarray analyses and in situ hybridization to monitor gene expression patterns during anther development in rice. Microarray analysis of 4,304 cDNA clones revealed that the hybridization signal of 396 cDNA clones (271 non-redundant groups) increased more than six-fold in every stage of the anthers compared with that of leaves. Cluster analysis with the expression data showed that 259 cDNA clones (156 non redundant groups) were specifically or predominantly expressed in anther tissues and were regulated by developmental stage-specific manners in the anther tissues. These co-regulated genes would be important for development of functional anther tissues. Furthermore, we selected several clones for RNA in situ hybridization analysis. From these analyses, we found several novel genes that show temporal and spatial expression patterns during anther development in addition to anther-specific genes reported so far. These results indicate that the genes identified in this experiment are controlled by different programs and are specialized in their developmental and cell types.  相似文献   

18.
<正>As a thermophilic crop that originated in tropical and subtropical areas, rice is sensitive to low temperatures, particularly during the early seedling stage. Cold stress at the seedling stage inhibits chlorophyll biosynthesis and causes oxidative damage, resulting in death(Zhao et al., 2020). Investigation of the mechanism of chloroplast development in rice seedlings under low-temperature conditions is important for breeding varieties with increased cold resistance.  相似文献   

19.
The mitochondrial elongation factor EF-Tu (tufM) in rice (Oryza sativa L.) was isolated and characterized. The rice tufM cDNA clone contained 1,726 nucleotides and coded for a 453 amino acid protein including a putative mitochondrial transit peptide of 64 amino acid residues. This coding region was composed of 12 exons and 11 introns. The deduced amino acid sequence showed 62% and 88% identities with rice chloroplast EF-Tu (tufA) and Arabidopsis mitochondrial EF-Tu, respectively. As previously observed for the rice tufA gene, the tufM gene is likely present as one copy in rice. The mitochondrial EF-Tu gene was differentially expressed during flower development, and the other translational EF-Tu genes (chloroplast EF-Tu and cytosolic EF-1 alpha) were also distinctly expressed in a temporal manner. Phylogenetic analysis of the rice tufM gene showed that the mitochondrial tufA homologue of Reclinomonas was more closely related to the mitochondrial tufM genes of flowering plants than fungal and other mitochondrial tuf genes. In addition, the tufM encoded an N-terminal extension showing significant similarity to that of rps14 (or sdhB), which is also a nuclear-encoded rice mitochondrial gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号