首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the role of the striatum in generation of multistage behavior, the spike activity of 148 cells was recorded in the monkey brain putamen. Two kinds of neuron responses were observed. Phasic response involved activity during only one stage of the behavior program, and tonic response involved activity during more than one sequential stage. The tonic responses were recorded in 132 neurons out of 148, 11 neurons responding only as tonic. Other 121 cells show under different conditions both tonic and phasic responses. Beginnings and ends of "tonic" responses as a rule corresponded to the start and completion of the nearest behavioral aim. The obtained data suggest that the neuron activity of striatum is related not only to the control of individual movements but also to the whole structure of behavior.  相似文献   

2.
The dynamics of tonic neuron activity of the putamen and prefrontal cortex of monkey's brain is researched by studying sequential stages of executive behavior program. It is determined that tonic responses in both structures are classified in separate blocks. The blocks are timed to key moments of behavior connected with intermediate goals framed by a common task. As to the structures of the aforesaid blocks of tonic activity in cortex and striatum, they are different in instructive part of the program and similar in executive one. More differential attitude of cortex is revealed to the sequence of executive behavior activity.  相似文献   

3.
The importance of estrogens in bone metabolism is illustrated by the accelerated bone loss and increase in osteoporotic fractures associated with postmenopausal estrogen deficiency. In this study, the expression and activity of the enzymes involved in estrogen metabolism in human osteoblastic cells were investigated in relation to differentiation of these cells. PCR reactions using mRNA from an in vitro differentiating human cell line (SV-HFO) were performed to assess mRNA expression of the enzymes aromatase, different subtypes of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and steroid sulfatase. Aromatase, sulfatase, and 17beta-HSD type 2 and 4 were found to be expressed throughout differentiation. Expression of 17beta-HSD type 3, however, was relatively weak, except for early time points in differentiation. Type 1 17beta-HSD expression was not detected. Aromatase activity decreased during differentiation, as was demonstrated by the conversion of androstenedione (A) and testosterone (T) into estrone (E(1)) and estradiol (E(2)), respectively. The 17beta-HSD isozymes catalysing a reductive reaction convert androstenedione and estrone into testosterone and estradiol, respectively. Their activity declined with differentiation. Analysis of 17beta-HSD activity indicated both oxidative (E(2) to E(1); T to A) and reductive (E(1) to E(2); A to T) metabolism at all stages of osteoblast differentiation. Both activities declined as cells moved toward a differentiating mineralizing phenotype. However, the oxidative reaction was increasingly in favor of the reductive reaction at all times during differentiation. Sulfatase activity, as demonstrated by the conversion of estrone-sulfate into estrone, was constant during differentiation. In conclusion, we have demonstrated that all enzymes necessary for estrogen metabolism are expressed and biologically active in differentiating human osteoblasts. The activity of aromatase and 17beta-HSD was found to be dependent on the stage of cell differentiation. In addition, human osteoblasts effectively convert estradiol into estrone. The efficacy of osteoblasts to synthesize estradiol may determine the ultimate change in rate of bone turnover after menopause, as well as the development of osteoporosis. Moreover, the enzymes involved in the metabolism of estradiol may form a target for intervention.  相似文献   

4.
The activity of neurones in the motor cortex, caudate nucleus, putamen and globus pallidus was studied during elaboration of motor conditioned reflexes to time in rabbits, treated with 1-amphetamine and haloperidol. Mechanisms of reproduction of cells trace activity in the reflex to time at the omission of trials, reacted to 1-amphetamine by increasing the intensity of reactions in the motor cortex and inactivation in putamen cells. The curve of dynamics of intensity changes of trace discharges in the course of a series of trials omissions remained unaltered only in motor cortex; in the other structures it significantly differed from the norm of intact animals. Haloperidol depressed the mechanisms of reproduction of trace reactions of the globus pallidus cells, and made them almost fully inactive in the motor cortex; the putamen neurones reacted to haloperidol by an increase of trace reactions intensity. Against the background of the animal chronic 1-amphetamine intoxication, haloperidol normalized the dynamics and intensity of trace activity. "Therapeutic" effect of haloperidol was most distinctly expressed in the motor cortex and putamen cells, less--in the caudate nucleus and was completely absent in the globus pallidus.  相似文献   

5.
Modulatory action of FSH on LH-induced follicular growth in rats   总被引:1,自引:0,他引:1  
Three to four ovaries from rats on the day of di-oestrus I were placed in perifusion culture at 10:30 h and exposed to (1) no gonadotrophin (in-vitro controls); (2) tonic FSH (200 ng RP-1/ml); (3) tonic LH (30 ng RP-1/ml); (4) tonic FSH + tonic LH; or (5) tonic FSH plus hourly pulses of LH (amplitude = 50 ng/ml). The total amount of LH administered was 3060 ng RP-1 regardless of mode of delivery. After culture for 3 h, the ovaries were prepared for histological analysis. Compared to in-vitro controls, tonic LH stimulation increased the number of follicles with greater than 1.6 X 10(5) granulosa cells (P less than 0.05); it was estimated that each follicle in the larger size class increased by 5.5 +/- 2.7 X 10(4) cells. Tonic FSH or tonic FSH + tonic LH treatment did not promote growth into the 1.6 X 10(5) cell class. In the presence of tonic FSH, hourly LH pulses induced follicular growth similar to that observed after tonic LH treatment. The data demonstrate that LH promotes the growth of follicles in vitro. FSH modulates this stimulatory action of LH, allowing it to be expressed when LH is administered in hourly pulses.  相似文献   

6.
The role of the system of deposited calcium in the mediation of contractile reactions to carbachol in an isolated amnion of 11–13 day old chicken embryo was studied. It was found that thapsigargin (2 μM, 20 min), an inhibitor of the endoplasmic reticulum Ca2+-ATPases, decreases the tonic reaction to carbachol by 40 ± 2%. In the presence of U73122 (5–10 μM, 10 min), a phosphoinositide-specific phospholipase C inhibitor, the rhythmic contractile reaction of the amnion to carbachol is blocked, whereas the tonic reaction decreases to 47 ± 9% of the initial one. Ryanodine (10 μM, 5 min) inhibits the spontaneous contractile activity of the amnion and decreases the tonic reaction to carbachol to 36 ± 3% relative to control. In the presense of ryanodine, nifedipine (0.05 μM) completely blocks the tonic reaction to carbachol. Thus, calcium mobilized from intracellular stores via inositol trisphosphate and ryanodine receptors is involved in realization of contractile reactions, mediated by M3 receptors, in the chick amnion.  相似文献   

7.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

8.
Hypoglossal (XII) nerve recordings indicate that pulmonary C-fiber (PCF) receptor activation reduces inspiratory bursting and triggers tonic discharge. We tested three hypotheses related to this observation: 1) PCF receptor activation inhibits inspiratory activity in XII branches innervating both tongue protrudor muscles (medial branch; XIImed) and retractor muscles (lateral branch; XIIlat); 2) reduced XII neurogram amplitude reflects decreased XII motoneuron discharge rate; and 3) tonic XII activity reflects recruitment of previously silent motoneurons. Phrenic, XIImed, and XIIlat neurograms were recorded in anesthetized, paralyzed, and ventilated rats. Capsaicin delivered to the jugular vein reduced phrenic bursting at doses of 0.625 and 1.25 mug/kg but augmented bursting at 5 mug/kg. All doses reduced inspiratory amplitude in XIImed and XIIlat (P < 0.05), and these effects were eliminated following bilateral vagotomy. Single-fiber recordings indicated that capsaicin causes individual XII motoneurons to either decrease discharge rate (n = 101/153) or become silent (n = 39/153). Capsaicin also altered temporal characteristics such that both XIImed and XIIlat inspiratory burst onset occurred after the phrenic burst (P < 0.05). Increases in tonic discharge after capsaicin were greater in XIImed vs. XIIlat (P < 0.05); single-fiber recordings indicated that tonic discharge reflected recruitment of previously silent motoneurons. We conclude that PCF receptor activation reduces inspiratory XII motoneuron discharge and transiently attenuates neural drive to both tongue protrudor and retractor muscles. However, tonic discharge appears to be selectively enhanced in tongue protrudor muscles. Accordingly, reductions in upper airway stiffness associated with reduced XII burst amplitude may be offset by enhanced tonic activity in tongue protrudor muscles.  相似文献   

9.
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.  相似文献   

10.
The reactions of single motor units (MU) of the flexor muscles (musculus tibialis anterior and musculus biceps femoris) to tactile (light touch), nociceptive (strong compression), and electrical stimulation of the skin of the same extremity were investigated in unanesthetized spinal rats and cats. These reactions were compared with the reactions of the same MU to impulsation from a focus of inflammation evoked on the same extremity. It is shown that the smaller the motor units (judging by the amplitude of its action potential), the higher its sensitivity to exciting and the lower its sensitivity to inhibitory effects from the flexor reflex afferents (FRA), the longer its after-discharges and the more pronounced its capacity for prolonged discharges in response to prolonged stimulation of the FRA. These functional properties of the small MU are characteristic of the tonic motor neurons and the slow muscle fibers innervated by them. It is shown that prolonged impulsation from a focus of inflammation evokes the continuous activity of precisely these (tonic) MU. The activity of the large (phasic) MU ceases 2–3 min after injury which causes a focus of inflammation. Such selective activation of only some of the tonic MU is evidently due to the fact that the prolonged exciting synaptic effect of impulsation from the focus of inflammation causes accommodation of the phasic motor neurons.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 308–315, May–June 1971.  相似文献   

11.
The electromyogram (EMG) of the diaphragm, lateral rectus, and nuchal and hindlimb muscles were studied during spontaneous activity and during hypercapnia or hypoxemia in eight fetal sheep from 0.5 to 0.8 gestation (73-128 days). At the earliest gestational age, diaphragmatic EMG activity was mainly tonic and associated with tonic activity of somatic muscles. The stimulus for the diaphragmatic activity originated centrally. Brief periods of a rapid-eye-movement (REM) state characterized by phasic lateral rectus and diaphragmatic activity and absence of nuchal activity were recognized. Furthermore, from 0.5 to 0.7 gestation onward, activity of all muscles increased. Thereafter increased specificity of activity in relation to the apparent REM and non-rapid-eye-movement (NREM) state occurred. With maturation, phasic diaphragmatic activity increased at the expense of tonic activity. The most striking effect of maturation on apnea was a greater proportion of apnea lasting greater than 1 min, but the total duration of apnea as a percent of a total recording remained unchanged. The quantitative response to hypercapnia during maturation was independent of the pattern of spontaneous diaphragmatic activity. Hypercapnia at 0.5 gestation changed the pattern of diaphragmatic EMG activity from mainly tonic to phasic. Thus the central chemoreceptors and appropriate neuronal pathways are present and functional as early as 0.5 gestation. Hypercapnia at 0.5 gestation caused a shift in diaphragmatic EMG power to lower frequencies similar to that found during control conditions in the older fetus. This might suggest that during maturation there is increased recruitment of phrenic motoneurons. Hypoxemia abolished tonic somatic activity at 0.5 gestation and decreased phasic diaphragmatic activity at more advanced gestational ages. Therefore the central inhibitory mechanisms of hypoxemia are developed by 0.5 gestation.  相似文献   

12.
Coronary arterial tissues obtained from mammalian hearts are known to develop spontaneous phasic contractions. The aim of the present study was to investigate the vasodilatory effects of docosahexaenoic acid (DHA) on the rhythmic contractions of isolated human coronary arterial (HCA) preparations obtained from the recipient hearts of patients undergoing cardiac transplantation. Results from 8 hearts show that: (i) most HCA tissues displayed spontaneous rhythmic phasic contractions with a cycle length around 10 min in the absence or presence of PGF2alpha or elevated [K+]0 (20 mM); (ii) the rhythmic activity could be suppressed by a free fatty acid DHA (30 microM); (iii) high [K+]0 (20 and 80 mM) could induce sustained tonic contraction in addition to phasic contractions in HCA tissues, the tonic contraction could be antagonized by L-type Ca(2+) channel blockers or by DHA (depending on [K+]0); (iv) a digitalis substance ouabain also could induce tonic contraction and suppress phasic contraction; (v) in isolated HCA vascular smooth muscle cells, DHA increased the magnitude of outward voltage-gated K+ (IKV) currents and the inwardly rectifying IK1 currents. Enhancement of K+ currents could be related to vasorelaxation induced by DHA in HCA preparations. Further studies on the effects of DHA on various ionic currents and intracellular Ca(2+) transient are needed to clarify the Ca(2+)-dependent and the Ca(2+)-independent actions of DHA in HCA.  相似文献   

13.
Elaboration of an instrumental reaction of getting the food from a narrow tube with a defnite forepaw (handedness) brings about a distinct re-distribution of cellular activity in the motor cortex and in the caudate nucleus, contralateral to the instrumental paw. The changes were observed at a 250 msec. interval before and 512 msec. interval after the beginning of the movement. Two types of cellular discharge changes were recorded: phasic and tonic. The phasic reactions (both inhibitory and activating) were grouped around the beginning of movement, with an average duration of about 100 msec. The tonic reactions lasted a few hundred milliseconds.  相似文献   

14.
The properties of a newly developed tonic heat pain model (THPM), which makes use of pulsating contact heat, were investigated in 18 young men. The most important feature of this model is that repetitive heat pulses with an intensity of 1°C above the individual pain threshold are employed. This approach was used to tailor the tonic pain stimulation to the individual pain sensitivity. In the first of two experiments, the effects of pulse frequencies ranging from 5 to 30 pulses per minute (ppm) on ratings of pain intensity and pain unpleasantness (visual analogue scales) were examined. At all frequencies, both ratings increased steadily over the 5-min test period. Frequencies of 15 ppm or more appeared to enhance pain intensity throughout the test period compared to the lower frequencies, but did not appear to alter pain unpleasantness. This suggests that only pain intensity is influenced by slow temporal summation and that a sort of frequency threshold exists for this kind of summation. In the second experiment, the THPM was compared to a well-established form of tonic pain stimulation, the compressor test (CPT); visual analogue scales were again used, and in addition the McGill Pain Questionnaire was employed. The CPT appeared to produce stronger tonic pain than the THPM. However, as is typical with tonic pain, both tonic pain models induced relatively higher values on the affective pain dimension than on the sensory pain dimension. The time course of pain was dynamic in the CPT, with an increase followed by a plateau phase, at least in those subjects who could tolerate the CPT for more than 60 sec. In contrast, as in the first experiment, the pain ratings in the THPM were characterized by a slow and steady increase over time. Moreover, there was absolutely no indication of a dichotomy between “pain-sensitive” and “pain-tolerant” individuals in the THPM, although such a dichotomy was evident in the CPT. This implies that the distinction between pain-sensitive and pain-tolerant individuals can be made only with the CPT, and that this distinction represents individual differences in peripheral vascular reactions to cold rather than in pain perception. In conclusion, the THPM appears to produce a stable and predictable temporal pattern of tonic pain with a predominant affective component, and to be suitable for application in the majority of individuals without causing undue discomfort.  相似文献   

15.
Sarcoplasmic and myofibrillar proteins of a frog mixed muscle (distal cruralis bundle) were investigated and compared to their fast twitch muscle homologues. Histochemical reactions revealed two populations of fibres in this muscle, differing from fast twitch fibres by the intensity of their myofibrillar ATPase reaction and by their mitochondrial NADH dehydrogenase activity. The distribution of parvalbumins and LDH isoenzymes in the whole muscle showed some features of tonic muscle type. Myosin light chains pattern of cruralis bundle fibres was characterized by the lower proportion of the LC3 subunit. These results confirmed the heterogeneity of this frog muscle and the presence of tonic or intermediate fibres with their typical sarcoplasmic and myofibrillar proteinic composition.  相似文献   

16.
In 13 healthy volunteers, we recorded stabilographic postural reactions (side inclinations of the body) to unilateral galvanic vestibular stimulation (GVS) by rectangular current pulses (4 sec long, 2, 3, 4, 5, or 6 mA). For the cathodal GVS, the dependence of the magnitude of reaction was linear within this range. The corresponding dependence for the anodal GVS was close to linear at small currents, but the increment of the magnitude became smaller with further increase in the stimulation intensity, and a plateau was formed. A significant divergence between the two curves was observed with stimulation currents 4 mA and higher. This difference can be explained considering modern concepts on the mechanism of GVS-induced effects (an increase or a decrease in the level of tonic impulsation in fibers of the vestibular nerve under the influence of polarization). Anodal GVS continues to suppress tonic activity up to the moment where all GVS-sensitive vestibular afferents stop to generate impulses; a further increase in the intensity of hyperpolarizing current is not accompanied by a decrease in the activity in the vestibular nerve and, consequently, by an increase in the magnitude of postural reactions. The tested approach can be used for qualitative estimation of the vestibular tone in humans. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 169–176, March–April, 2005.  相似文献   

17.
By studying the effects of gangliosides (G) on learning and memory we have found that i.p. administration of G led to a decrease in AC activity in the cortex (Cx) and striatum (Str) as well as in the threshold of the sensitivity of striatal neurons to the effect of cholinergic agonists. G also modified the sensitivity of AC from the Cx and Str to such agents as Gpp[NH]p and forskolin. The aim of this work was to analyze the correlation between the changes in the activity of AC in the Cx and Str, concentration of G in these brain structures as well as formation of motor reactions of newborn rats during the first month of postnatal ontogenesis. It was found that new born rats develop normal body rotation by sixth day, locomotion by fifteenth day and stabilization of locomotor activity and supporting body balance by 20–22nd day. As shown previously, the concentration of gangliosides in the Cx and Str is gradually increasing during the first month of animal development. The activity of AC (pmol cAMP/min/mg of protein) in the Cx was found to decrease from 34.75 to 4.09 and in the Str from 46.00 to 11.67 during the first week after birth. However in the periods of formation of general behavioural reactions we observed a statistically significant increase in AC activity: in the Str on 10th and 26th days (p < 0.01) and in the Cx from 10th to 19th days (p < 0.05) compared to the AC activity on 5th and 30th days. Thus, formation of locomotor activity and posture‐tonic reactions during development of rats in early postnatal ontogenesis correlates with increasing concentration of G and basal activity of AC. Supported by RFBR (99‐04‐49751) and RAS (99‐06‐287).  相似文献   

18.
During elaboration of a classical defensive conditioned reflex the dogs exhibited a dependence of the changes in amplitude and configuration of evoked potentials (EP) to electrical stimulation of the medial geniculate body (MGB), a conditioned stimulus, on the nature of effector manifestation of the conditioned reflex: the late components were the most depressed at multiple phasic reactions and not infrequently increased and became complicated at single and short motor reactions as well as at their incidental absence. The primary oscillations, while mostly remaining unchanged, were depressed in the case of conditioned reactions attended with a general motor restlessness. A difference has been revealed during conditioning in the EP changes to electrical stimulation of MGB and to an adequate peripheral stimulation. It has been assumed that EP changes during conditioned activity are determined by the relationship between the levels of tonic and phasic cortical activation.  相似文献   

19.
Long-term extracellular recordings from a spiking, movement-sensitive giant neuron (H1) in the third optic ganglion of the blowfly Calliphora vicina (L.) revealed periodic endogenous sensitivity fluctuations. The sensitivity changes showed properties typical of an endogenous circadian rhythm. This was true for the responses in reaction to intensity changes of visual patterns as well as for the responses elicited by pattern movement. For these two types of stimuli, the circadian fluctuations were comparable, but the envelope in the case of responses to movement was more robust. A circadian fluctuation in responses to movement is, therefore, present at the level of single elementary movement detectors. The tonic activity of the neuron was also shown to be under circadian control. In constant darkness (DD) the fluctuation was circadian, whereas in constant light it was not. The subjective light-dark (LD) transitions in the tonic activity in DD closely followed the LD transitions in the holding cages initially; that is, there was low activity at night and high activity during the daytime. The sensitivity fluctuations in response to visual stimuli led the tonic spike activity fluctuations by several hours.  相似文献   

20.
Networks constructed of biologically realistic model neurons (neuroids) were used to study how in a neural assembly using pulse (interval)-coded information slow rhythmical oscillations with possible mode transitions might occur and how the efferent commands might be structured and their phase-shifts created. The simulations show that slow oscillations (in the hertz range) can be derived from reverberatory spiking in relatively short closed loops (fewer than ten neuroids) with the inputs protected against disturbing afferent signals and the outputs coupled by convergence on a common neuroid. Slow oscillations can be modified by a tonic activity entering the network; this activity changes the transmission time in the coupled loops involved. The structuring of the regulatory commands (in the millisecond range) was achieved by simulation of sequential activity propagation in a non-ring neuronal assembly supervised by a tonic activity in a set of inputs. The tonic activity acted as an instructive signal influencing the pattern of the functional connectivity in such a way that a particular efferent command was generated by the instructed network. Received: 3 March 1997 / Accepted in revised form: 15 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号