首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

2.
We have previously reported that mouse plasmacytoid dendritic cells (DC) produce high levels of IL-12p70, whereas bone marrow-derived myeloid DC and splenic DC produce substantially lower levels of this cytokine when activated with the TLR-9 ligand CpG. We now show that in response to CpG stimulation, high levels of IL-10 are secreted by macrophages, intermediate levels by myeloid DC, but no detectable IL-10 is secreted by plasmacytoid DC. MyD88-dependent TLR signals (TLR4, 7, 9 ligation), Toll/IL-1 receptor domain-containing adaptor-dependent TLR signals (TLR3, 4 ligation) as well as non-TLR signals (CD40 ligation) induced macrophages and myeloid DC to produce IL-10 in addition to proinflammatory cytokines. IL-12p70 expression in response to CpG was suppressed by endogenous IL-10 in macrophages, in myeloid DC, and to an even greater extent in splenic CD8alpha(-) and CD8alpha(+) DC. Although plasmacytoid DC did not produce IL-10 upon stimulation, addition of this cytokine exogenously suppressed their production of IL-12, TNF, and IFN-alpha, showing trans but not autocrine regulation of these cytokines by IL-10 in plasmacytoid DC.  相似文献   

3.
Dendritic cells (DC) are present at low density in the thymus where they mediate negative selection of self-reactive thymocytes. Previous reports suggest that thymic DC (TDC) are a single population of lymphoid-related DC. In this study, we documented the presence in the adult mouse thymus of an additional population of TDC exhibiting a myeloid phenotype (CD11c(+) CD8alpha(-) CD11b(+)). This population, which can be purified, represented approximately 20% of the total TDC and differs from the population of lymphoid TDC (CD11c(+) CD8(+) CD11b(-)) by its incapacity to produce IL-12p70 under double stimulation by LPS and anti-CD40. Furthermore, using an original culture system allowing expansion of DC from myeloid progenitors, we demonstrated that DC exhibiting a similar myeloid phenotype can be derived from a common DC/macrophage progenitor resident in the adult mouse thymus. We found that, in contrast with myeloid splenic DC expanded in the same conditions, these cultured TDC were unable to produce IL-12p70 under double stimulation by LPS and anti-CD40 or LPS and IFN-gamma. Thus, our results suggest that 1) adult mouse thymus contains at least two phenotypically and functionally distinct populations of DC; and 2) cultured myeloid DC derived from thymus and spleen differ by their ability to produce IL-12p70. The mechanisms underlying the differences in IL-12-secreting capacities of the cultured splenic and thymic DC are under current investigation.  相似文献   

4.
Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-alpha, and IFN-gamma. Splenic CD4(-)8(+) DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4(-)8(-) or CD4(+)8(-) DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8alpha itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8(+) DC. Additionally, CD8(+) DC were identified as the major producers of IFN-alpha compared with the two CD8(-) DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4(-)8(-) DC produced much more IFN-gamma than the CD4(-)8(+) or the CD4(+)8(-) DC under all conditions tested.  相似文献   

5.
The outcome of dendritic cell (DC) presentation of tumor and/or self peptides, including P815AB (a tumor peptide of murine mastocytoma cells) and NRP-A7 (a synthetic peptide mimotope recognized by diabetogenic T cells), may depend on a balance between the activities of immunogenic (CD8alpha(-)) and tolerogenic (CD8alpha(+)) DC. By virtue of their respective actions on CD8(-) and CD8(+) DC, IL-12 and IFN-gamma have functionally opposing effects on peptide presentation by the CD8(-) DC subset, and IFN-gamma-activated CD8(+) DC mediate tolerogenic effects that prevail over the adjuvant activity of IL-12 on CD8(-) DC. We have previously shown that CD40 ligation abrogates the tolerogenic potential of CD8(+) DC, an effect associated with an impaired capacity of the CD40-modulated and IFN-gamma-treated DC to degrade tryptophan and initiate T cell apoptosis in vitro. We report here that IL-6 may both replace (upon administration of the recombinant cytokine) and mediate (as assessed by the use of neutralizing Abs) the effect of CD40 ligation in ablating the tolerogenic activity of CD8(+) DC. The activity of IL-6 includes down-regulation of IFN-gammaR expression in the CD8(+) DC subset and correlates to a reduced ability of these cells to metabolize tryptophan and initiate T cell apoptosis in vitro.  相似文献   

6.
To gain insight into the defects responsible for impaired Th1 responses in human newborns, we analyzed the production of cytokines by dendritic cells (DC) derived from cord blood monocytes. We observed that neonatal DC generated from adherent cord blood mononuclear cells cultured for 6 days in the presence of IL-4 and GM-CSF show a phenotype similar to adult DC generated from adherent PBMC, although they express lower levels of HLA-DR, CD80, and CD40. Measurement of cytokine levels produced by neonatal DC upon stimulation by LPS, CD40 ligation, or poly(I:C) indicated a selective defect in the synthesis of IL-12. Determination of IL-12(p40) and IL-12(p35) mRNA levels by real-time RT-PCR revealed that IL-12(p35) gene expression is highly repressed in stimulated neonatal DC whereas their IL-12(p40) gene expression is not altered. The addition of rIFN-gamma to LPS-stimulated newborn DC restored their expression of IL-12(p35) and their synthesis of IL-12 (p70) up to adult levels. Moreover, we observed that neonatal DC are less efficient than adult DC to induce IFN-gamma production by allogenic adult CD4(+) T cells. This defect was corrected by the addition of rIL-12. We conclude that neonatal DC are characterized by a severe defect in IL-12(p35) gene expression which is responsible for an impaired ability to elicit IFN-gamma production by T cells.  相似文献   

7.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

8.
CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells   总被引:17,自引:0,他引:17  
The outcome of dendritic cell (DC) presentation of P815AB, a tolerogenic tumor/self peptide, depends on a balance between the respective immunogenic and tolerogenic properties of myeloid (CD8 alpha(-)) and lymphoid (CD8 alpha(+)) DC. We have previously shown that CD8(-) DC can be primed by IL-12 to overcome inhibition by the CD8(+) subset and initiate immunogenic presentation in vivo when the two types of peptide-pulsed DC are cotransferred into recipient hosts. IFN-gamma enhances the inhibitory activity of CD8(+) DC on Ag presentation by the other subset, blocking the ability of IL-12-treated CD8(-) DC to overcome suppression. We report here that CD40 ligation on lymphoid DC ablated their inhibitory function on Ag presentation as well as IFN-gamma potentiation of the effect. CD40 modulation of IFN-gamma action on lymphoid DC involved a reduction in IFN-gamma R expression and tryptophan-degrading ability. This effect was accompanied in vitro by an impaired capacity of the CD40-modulated and IFN-gamma-treated DC to initiate T cell apoptosis. In vivo, not only did CD40 triggering on lymphoid DC abrogate their tolerogenic activity, but it also induced the potential for immunogenic presentation of P815AB. Importantly, a pattern similar to P815AB as well as CD40 modulation of lymphoid DC function were observed on testing reactivity to NRP, a synthetic peptide mimotope recognized by diabetogenic CD8(+) T cells in nonobese diabetic mice.  相似文献   

9.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

10.
Ligation of CD40 on dendritic cells (DC) triggers production of IL-12. Using an adoptive transfer model we have previously shown that rIL-12 acts directly on DC to enhance presentation of an otherwise poorly immunogenic tumor peptide. Using the same experimental model, we now describe a similar adjuvanticity of CD40 ligation on peptide presentation by DC. We also explore the possibility that the IL-12 resulting from CD40 ligation directly affects the APC function of DC, mediating or contributing to the adjuvant effect of CD40 ligation. CD40 engagement in vitro and rIL-12 at concentrations in the range induced by CD40 ligation were equally effective in priming DC for presentation of the tumor peptide in vivo. Remarkably, the copresence in vitro of neutralizing Ab to IL-12, but not to TNF-alpha, IL-1beta, or IFN-gamma, ablated the enhancing effect of CD40 engagement on the APC function of DC. These data suggest a major role for autocrine IL-12 in DC modulation via CD40 ligation.  相似文献   

11.
We examined modulatory effects of lipopolysaccharide (LPS) on IL-6 and IL-12 production by mouse Langerhans cells (LC), spleen-derived CD11c+ dendritic cells (DC), and macrophages (Mphi). Low dose LPS (1 ng/ml) increased IL-6 and IL-12 p40 production by Mphi. LPS slightly augmented IL-6 production but showed no effect on IL-12 p40 production by DC. In contrast, only high dose LPS (1 microg/ml) induced IL-6 but not IL-12 p40 production by LC. CD14 expression was the highest on Mphi and then on DC, but not on LC, which may explain the difference in responsiveness to LPS. We also found that TGF-beta inhibited IL-6 and IL-12 p40 production by LPS-stimulated Mphi. However, TGF-beta did not inhibit IL-6 production and even enhanced IL-12 p40 production by anti-CD40/IFN-gamma-stimulated Mphi. Concerning LC, TGF-beta enhanced IL-6 and IL-12 p40 production when stimulated with anti-CD40/IFN-gamma alone or with anti-CD40/IFN-gamma and LPS. Taken together, these findings indicate diverse effects of LPS and TGF-beta on these antigen presenting cells, which probably represents their differential roles in the innate immunity.  相似文献   

12.
Unlike naive T cells, memory phenotype (CD44(high)) T cells exhibit a high background rate of turnover in vivo. Previous studies showed that the turnover of memory phenotype CD8(+) (but not CD4(+)) cells in vivo can be considerably enhanced by products of infectious agents such as LPS. Such stimulation is TCR independent and hinges on the release of type I IFNs (IFN-I) which leads to the production of an effector cytokine, probably IL-15. In this study, we describe a second pathway of CD44(high) CD8(+) stimulation in vivo. This pathway is IFN-gamma rather than IFN-I dependent and is mediated by at least three cytokines, IL-12, IL-18, and IFN-gamma. As for IFN-I, these three cytokines are nonstimulatory for purified T cells and under in vivo conditions probably act via production of IL-15.  相似文献   

13.
IL-23 is a recently discovered heterodimeric cytokine that shares biological properties with proinflammatory cytokines. The biologically active heterodimer consists of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess biological activities on T cells that are similar as well distinct from those of IL-12. We have constructed single-chain IL-23 and IL-12 fusion proteins (IL-23-Ig and IL-12-Ig) and have compared the two recombinant proteins for effects on murine dendritic cells (DC). Here we show that the IL-23-Ig can bind a significant proportion of splenic DC of both the CD8alpha(-) and CD8alpha(+) subtypes. Furthermore, IL-23and IL-12-Ig exert biological activities on DC that are only in part overlapping. While both proteins induce IL-12 production from DC, only IL-23-Ig can act directly on CD8alpha(+) DC to promote immunogenic presentation of an otherwise tolerogenic tumor peptide. In addition, the in vitro effects of IL-23-Ig did not appear to require IL-12Rbeta2 or to be mediated by the production of IL-12. These data may establish IL-23 as a novel cytokine with major effects on APC.  相似文献   

14.
15.
Anergy and suppression are cardinal features of CD4(+)CD25(+)Foxp3(+) T cells (T regulatory cells (Treg)) which have been shown to be tightly controlled by the maturation state of dendritic cells (DC). However, whether lymphoid organ DC subsets exhibit different capacities to control Treg is unclear. In this study, we have analyzed, in the rat, the role of splenic CD4(+) and CD4(-) conventional DC and plasmacytoid DC (pDC) in allogeneic Treg proliferation and suppression in vitro. As expected, in the absence of exogenous IL-2, Treg did not expand in response to immature DC. Upon TLR-induced maturation, all DC became potent stimulators of CD4(+)CD25(-) T cells, whereas only TLR7- or TLR9-matured pDC induced strong proliferation of CD4(+)CD25(+)Foxp3(+) T cells in the absence of exogenous IL-2. This capacity of pDC to reverse Treg anergy required cell contact and was partially CD86 dependent and IL-2 independent. In suppression assays, Treg strongly suppressed proliferation and IL-2 and IFN-gamma production by CD4(+)CD25(-) T cells induced by mature CD4(+) and CD4(-) DC. In contrast, upon stimulation by mature pDC, proliferating Treg suppressed IL-2 production by CD25(-) cells but not their proliferation or IFN-gamma production. Taken together, these results suggest that anergy and the suppressive function of Treg are differentially controlled by DC subsets.  相似文献   

16.
Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice   总被引:2,自引:0,他引:2  
Both IL-12 and IL-18 have been characterized as effective IFN-gamma-inducing cytokines. Concomitant treatment with IL-12 and IL-18 has been shown to synergistically induce IFN-gamma and may be an effective therapy for treating cancer, allergy, and infectious diseases. To understand the mechanisms underlying the strong induction of IFN-gamma by IL-12/IL-18 in mice, we focused our studies on the IFN-gamma-producing cells in various lymphoid organs and tissues and utilized the intracellular cytokine staining method to detect such cells in situ. After combined treatment with IL-12 and IL-18, IFN-gamma-positive cells in C57BL/6 mice were detected in the liver (12.18%), spleen (0.68%), bone marrow (1.80%), and peritoneum (2.12%), but not in the thymus or lymph nodes (<0.05 and <0.08%, respectively). A two-color staining method revealed that the majority of IFN-gamma-producing cells in the liver were NK1.1(+) cells, while those in the spleen were mostly CD3(+) cells, and to a lesser degree NK1.1(+) cells. Both CD4(+) and CD8(+) cells in the liver and in the spleen produced IFN-gamma. The CD19(+) B cell population was not definitely shown to produce IFN-gamma in our induction experiments. NKT cells, which are a subpopulation of NK1. 1(+) CD3(+) cells, were diminished in the liver and did not seem to contribute to IFN-gamma production arising from IL-12/IL-18 treatment. Further in vitro experiments confirmed the responsiveness of hepatic mononuclear cells to IL-12/IL-18 stimulation. This study is the first to show the IFN-gamma-producing mechanisms of IL-12/IL-18 treatment at the phenotypic level.  相似文献   

17.
IL-12 induction is critical for immune responses against many viruses and intracellular bacterial pathogens. Recent studies suggest that IL-12-secreting dendritic cells (DC) are potent Th1-inducing APC. However, controversy exists concerning the function of DC subsets. Murine studies have suggested that CD8(+) DC preferentially induce Th1 responses, whereas CD8(-) DC induce Th2 development; in this model, different DC subsets prime different responses. Alternatively, the propensity of DC subsets to prime a Th1 response could depend upon the type of initial stimulus. We used a prototypic Th1-inducing adjuvant, heat-killed Brucella abortus (HKBA) to assess stimulation of DC subsets, relationship between Ag burden and IL-12 production, and down-regulation of DC subset IL-12 production by IL-10. In this study, we show that DC were sole producers of IL-12, although most HKBA uptake was by splenic macrophages and granulocytes. More CD8(-) than CD8(+) DC produced IL-12 after HKBA challenge, whereas only CD8(+) DC produced IL-12 after injection of another Th1-promoting microbial substance, soluble Toxoplasma gondii Ags. Studies in IL-10-deficient mice revealed that IL-10 down-regulates frequency and duration of IL-12 production by both DC subsets. In the absence of IL-10, IL-12 expression is enabled in CD11c(low) cells, but not in macrophages or granulocytes. These findings support the concept of DC as the major IL-12 producers in spleens, but challenge the notion that CD8(+) and CD8(-) DC are destined to selectively induce Th1 or Th2 responses, respectively. Thus, the nature of the stimulating substance is important in determining which DC subsets are activated to produce IL-12.  相似文献   

18.
Regulation of T cell cytokine production by dendritic cells   总被引:7,自引:0,他引:7  
Previous work has established that the dendritic cells (DC) of mouse spleen regulate the IL-2 production, and hence the extent of proliferation, of the CD8 T cells they activate. It is now reported here that interaction of primary CD8 T cells with splenic CD8alpha- DC induced much higher production of IL-3, IFN-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as IL-2, than did interaction with CD8alpha+ splenic DC. Furthermore, the CD8alpha- DC also induced higher levels of IL-2, IL-3 and IL-10 production in primary CD4 T cells, compared with that induced by CD8alpha+ DC. These quantitative differences did not involve qualitative shifts in the type of cytokine produced. Interleukin-4 production remained low in all the primary T cell cultures and restimulation experiments in secondary cultures did not reveal any bias in the cytokine production profile. When exogenous IL-2 was added to the primary cultures to ensure equal proliferation in response to CD8alpha- or CD8alpha+ DC, the higher level of production of IL-3, IFN-gamma and GM-CSF induced by CD8alpha- DC was maintained. Thus, this general control of T cell cytokine production by splenic DC involves factors additional to those that govern activation of T cells into cell cycle.  相似文献   

19.
Proinflammatory molecules, including IFN-gamma and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-alpha, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-alpha transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4(+) and CD8(+) adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-alpha expressed on immature DC and mature DC. SIRP-alpha engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-gamma production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-alpha on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.  相似文献   

20.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号