首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The MinC protein is an important determinant of septal ring positioning in Escherichia coli. The N-terminal domain ((Z)MinC) suppresses septal ring formation by interfering with FtsZ polymerization, whereas the C-terminal domain ((D)MinC) is required for dimerization as well as for interaction with the MinD protein. MinD oscillates between the membrane of both cell halves in a MinE-dependent fashion. MinC oscillates along with MinD such that the time-integrated concentration of (Z)MinC at the membrane is minimal, and hence the stability of FtsZ polymers is maximal, at the cell center. MinC is cytoplasmic and fails to block FtsZ assembly in the absence of MinD, indicating that recruitment of MinC by MinD to the membrane enhances (Z)MinC function. Here, we present evidence that the binding of (D)MinC to MinD endows the MinC/MinD complex with a more specific affinity for a septal ring-associated target in vivo. Thus, MinD does not merely attract MinC to the membrane but also aids MinC in specifically binding to, or in close proximity to, the substrate of its (Z)MinC domain. MinC-mediated division inhibition can also be activated in a MinD-independent fashion by the DicB protein of cryptic prophage Kim. DicB shows little homology to MinD, and how it stimulates MinC function has been unclear. Similar to the results obtained with MinD, we find that DicB interacts directly with (D)MinC, that the (D)MinC/DicB complex has a high affinity for some septal ring target(s), and that MinC/DicB interferes with the assembly and/or integrity of FtsZ rings in vivo. The results suggest a multistep mechanism for the activation of MinC-mediated division inhibition by either MinD or DicB and further expand the number of properties that can be ascribed to the Min proteins.  相似文献   

2.
In Escherichia coli the Min system prevents Z ring assembly at cell poles by topologically regulating the division inhibitor MinC. The MinC protein has two domains of equal size and both domains can target FtsZ and block cell division in the proper context. Recently, we have shown that, along with MinD, the C‐terminal domain of MinC (MinCC) competes with FtsA, and to a lesser extent with ZipA, for interaction with the C‐terminal tail of FtsZ to block division. Here we explored the interaction between the N‐terminal domain of MinC (MinCN) and FtsZ. A search for mutations in ftsZ that confer resistance to MinCN identified an α‐helix at the interface of FtsZ subunits as being critical for the activity of MinCN. Focusing on one such mutant FtsZ–N280D, we showed that it greatly reduced the FtsZ–MinC interaction and was resistant to MinCN both in vivo and in vitro. With these results, an updated model for the action of MinC on FtsZ is proposed: MinC interacts with FtsZ to disrupt two interactions, FtsZ–FtsA/ZipA and FtsZ–FtsZ, both of which are essential for Z ring formation.  相似文献   

3.
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.  相似文献   

4.
The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that requires the coordinate action of the MinC, MinD, and MinE proteins. In the absence of MinE, the coordinate expression of MinC and MinD leads to a general inhibition of cell division. MinE gives topological specificity to the division inhibition process, so that the septation block is restricted to the cell poles. At normal levels of expression, both MinC and MinD are required for the division block. We show here that, when expressed at high levels, MinC acts as a division inhibitor even in the absence of MinD. The division inhibition that results from MinC overexpression in the absence of MinD is insensitive to the MinE topological specificity factor. The results suggest that MinC is the proximate cause of the septation block and that MinD plays two roles in the MinCDE system--it activates the MinC-dependent division inhibition mechanism and is also required for the sensitivity of the division inhibition system to the MinE topological specificity factor.  相似文献   

5.
SulA and MinCD are specific inhibitors of cell division in Escherichia coli. In this paper, size exclusion chromatography was used to study the effect of the SulA and MinCD division inhibitors on the oligomerization state of endogenous FtsZ in cytoplasmic extracts, and immunofluorescence microscopy was used to determine the effect of SulA and MinCD on the formation of FtsZ, FtsA and ZipA rings at potential division sites. SulA prevented the formation of high-molecular-weight FtsZ polymers by interfering with FtsZ dimerization and subsequent oligomerization. In contrast, the MinCD division inhibitor did not prevent the oligomerization of FtsZ in the cell extracts or the formation of FtsZ and ZipA ring structures in vivo. However, MinCD did prevent the formation of FtsA rings. Increased expression of ftsA suppressed MinCD-induced division inhibition, but had no effect on SulA-induced division inhibition. These results indicate that MinCD blocks the assembly of the septation machinery at a later step than SulA, at the stage at which FtsA is added to the FtsZ ring.  相似文献   

6.
In Escherichia coli, the min system prevents division away from midcell through topological regulation of MinC, an inhibitor of Z-ring formation. The topological regulation involves oscillation of MinC between the poles of the cell under the direction of the MinDE oscillator. Since the mechanism of MinC involvement in the oscillation is unknown, we investigated the interaction of MinC with the other Min proteins. We observed that MinD dimerized in the presence of ATP and interacted with MinC. In the presence of a phospholipid bilayer, MinD bound to the bilayer and recruited MinC in an ATP-dependent manner. Addition of MinE to the MinCD-bilayer complex resulted in release of both MinC and MinD. The release of MinC did not require ATP hydrolysis, indicating that MinE could displace MinC from the MinD-bilayer complex. In contrast, MinC was unable to displace MinE bound to the MinD-bilayer complex. These results suggest that MinE induces a conformational change in MinD bound to the bilayer that results in the release of MinC. Also, it is argued that binding of MinD to the membrane activates MinC.  相似文献   

7.
By inhibiting FtsZ ring formation near the cell ends, the MinC protein plays a critical role in proper positioning of the division apparatus in Escherichia coli. MinC activity requires that of MinD, and the MinE peptide provides topological specificity by suppressing MinC-MinD-mediated division inhibition specifically at the middle of the cell. We recently presented evidence that MinE not only accumulates in an FtsZ-independent ring structure at the cell's middle but also imposes a unique dynamic localization pattern upon MinD in which the latter accumulates alternately in either one of the cell halves in what appears to be a rapidly oscillating membrane association-dissociation cycle. Here we show that functional green fluorescent protein-MinC displays a very similar oscillatory behavior which is dependent on both MinD and MinE and independent of FtsZ. The results support a model in which MinD recruits MinC to its site of action and in which FtsZ ring assembly at each of the cell ends is blocked in an intermittent and alternate fashion.  相似文献   

8.
Placement of the Z ring at midcell in Escherichia coli is assured by the action of the min system, which blocks usage of potential division sites that exist at the cell poles. This activity of min is achieved through the action of an inhibitor of division, MinC, that is activated by MinD and topologically regulated by MinE. In this study, we have used a functional GFP-MinC fusion to monitor the location of MinC. We find that GFP-MinC is a cytoplasmic protein in the absence of the other Min proteins. The addition of MinD, a peripheral membrane protein that interacts with MinC, results in GFP-MinC appearing on the membrane. In the presence of both MinD and MinE, GFP-MinC oscillates rapidly between the halves of the cell. Thus, MinC is positioned by the other Min products, but in a dynamic manner so that it is in position to inhibit Z ring assembly away from midcell.  相似文献   

9.
In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts min function, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.  相似文献   

10.
We observed that the oscillation period of MinD within rod-like and filamentous cells of Escherichia coli varied by a factor of 4 in the temperature range from 20 degrees C to 40 degrees C. The detailed dependence was Arrhenius, with a slope similar to the overall temperature-dependent growth curve of E. coli. The detailed pattern of oscillation, including the characteristic wavelength in filamentous cells, remained independent of temperature. A quantitative model of MinDE oscillation exhibited similar behavior, with an activated temperature dependence of the MinE-stimulated MinD-ATPase rate.  相似文献   

11.
The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (Kd) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The Kd for MinD (1.8 μm) in the presence of ATP was smaller than for MinE (12.1 μm) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (kon). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential.  相似文献   

12.
The Min proteins are involved in determining cell division sites in bacteria and have been studied extensively in rod-shaped bacteria. We have recently shown that the gram-negative coccus Neisseria gonorrhoeae contains a min operon, and the present study investigates the role of minD from this operon. A gonococcal minD insertional mutant, CJSD1, was constructed and exhibited both grossly abnormal cell division and morphology as well as altered cell viability. Western blot analysis verified the absence of MinD from N. gonorrhoeae (MinD(Ng)) in this mutant. Hence, MinD(Ng) is required for maintaining proper cell division and growth in N. gonorrhoeae. Immunoblotting of soluble and insoluble gonococcal cell fractions revealed that MinD(Ng) is both cytosolic and associated with the insoluble membrane fraction. The joint overexpression of MinC(Ng) and MinD(Ng) from a shuttle vector resulted in a significant enlargement of gonococcal cells, while cells transformed with plasmids encoding either MinC(Ng) or MinD(Ng) alone did not display noticeable morphological changes. These studies suggest that MinD(Ng) is involved in inhibiting gonococcal cell division, likely in conjunction with MinC(Ng). The alignment of MinD sequences from various bacteria showed that the proteins are highly conserved and share several regions of identity, including a conserved ATP-binding cassette. The overexpression of MinD(Ng) in wild-type Escherichia coli led to cell filamentation, while overexpression in an E. coli minD mutant restored a wild-type morphology to the majority of cells; therefore, gonococcal MinD is functional across species. Yeast two-hybrid studies and gel-filtration and sedimentation equilibrium analyses of purified His-tagged MinD(Ng) revealed a novel MinD(Ng) self-interaction. We have also shown by yeast two-hybrid analysis that MinD from E. coli interacts with itself and with MinD(Ng). These results indicate that MinD(Ng) is required for maintaining proper cell division and growth in N. gonorrhoeae and suggests that the self-interaction of MinD may be important for cell division site selection across species.  相似文献   

13.
14.
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S2 constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.  相似文献   

15.
Hyperthermic sensitivity and growth stage in Escherichia coli   总被引:1,自引:0,他引:1  
Hyperthermic sensitivities of Escherichia coli B/r and Bs-1 were determined for lag-, midlog-, and stationary-phase cells at 47, 48, and 49 degrees C. In both strains midlog-phase cells were strikingly more heat sensitive (100-fold greater killing after 4 h at 48 degrees C) than stationary-phase cells, with intermediate sensitivity for lag-phase cells. In contrast to the reported difference in the radiation sensitivity between these two strains, very little difference in heat sensitivity was seen. Patterns of fatty acid composition of both strains were very similar at each phase of growth. From midlog to stationary phase, 16:1 and 18:1 unsaturated fatty acids decrease from 16 and 30% to 0.5 and 3%, respectively, while the C17 and C19 cyclopropane fatty acids increase from 7 and 3% to 22 and 25%, respectively. Concomitant with these changes in fatty acid composition, substantially higher membrane microviscosity values were recorded for stationary-phase cells. Total membrane microviscosity was positively associated with the C17 and C19 cyclopropane fatty acid composition and with cell survival following hyperthermia. In contrast to hyperthermic sensitivity, radiation survival differences between B/r and Bs-1 are little affected by growth stage. We propose that these results are consistent with a critical influence of membrane lipids on cellular hyperthermic sensitivity and further that the target sites for radiation and hyperthermia are different in these cells.  相似文献   

16.
Xu T  Brown W  Marinus MG 《PloS one》2012,7(3):e33256
Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.  相似文献   

17.
Phenethyl alcohol sensitivity in Escherichia coli.   总被引:6,自引:6,他引:0       下载免费PDF全文
  相似文献   

18.
M T Fisher 《Biochemistry》1991,30(41):10012-10018
The thermal stabilities of ferri- and ferrocytochrome b562 were examined. Thermally induced spectral changes, monitored by absorption and second-derivative spectroscopies, followed the dissociation of the heme moiety and the increased solvation of tyrosine residue(s) located in close proximity to the heme binding site. All observed thermal transitions were independent of the rate of temperature increase (0.5-2 degrees C/min), and the denatured protein exhibited partial to near-complete reversibility upon return to ambient temperature. The extent of renaturation of cytochrome b562 is dependent on the amount of time the unfolded conformer is exposed to temperatures above the transition temperature, Tm. All thermally induced spectra changes fit a simple two-state model, and the thermal transition was assumed to be reversible. The thermal transition for ferrocytochrome b562 yielded Tm and van't Hoff enthalpy (delta HvH) values of 81.0 degrees C and 137 kcal/mol, respectively. In contrast, Tm and delta HvH values obtained for the ferricytochrome were 66.7 degrees C and 110 kcal/mol, respectively. The estimated increase in the stabilization free energy at the Tm of ferricytochrome b562 following the one-electron reduction to the ferrous form, where delta delta G = delta Tm delta Sm [delta Sm = 324 cal/(K.mol), delta Tm = 14.3 degrees C] [Becktel, W. J., & Schellman, J. A. (1987) Biopolymers 26, 1859-1877], is 4.6 kcal/mol.  相似文献   

19.
20.
Interactions between the MinD and MinE proteins are required for proper placement of the Escherichia coli division septum. The site within MinE that is required for interaction with MinD was mapped by studying the effects of site-directed minE mutations on MinD-MinE interactions in yeast two-hybrid and three-hybrid experiments. This confirmed that the MinE N-terminal domain is responsible for the interaction of MinE with MinD. Mutations that interfered with the interaction defined an extended surface on one face of the alpha-helical region of the MinE N-terminal domain, consistent with the idea that the MinE-MinD interaction involves formation of a coiled-coil structure by interaction with a complementary helical surface within MinD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号