首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expanded analysis of oceanic metagenomic data indicates that the majority of prokaryotic cells in marine surface waters have the genetic capability to demethylate dimethylsulfoniopropionate (DMSP). The 1701 homologues of the DMSP demethylase gene, dmdA , identified in the (2007) Global Ocean Sampling (GOS) metagenome, are sufficient for 58% (±9%) of sampled cells to participate in this critical step in the marine sulfur cycle. This remarkable frequency of DMSP-demethylating cells is in accordance with biogeochemical data indicating that marine phytoplankton direct up to 10% of fixed carbon to DMSP synthesis, and that most of this DMSP is subsequently degraded by bacteria via demethylation. The GOS metagenomic data also revealed a new cluster of dmdA sequences (designated Clade E) that implicates marine gammaproteobacteria in DMSP demethylation, along with previously recognized alphaproteobacterial groups Roseobacter and SAR11. Analyses of G+C content and gene order indicate that lateral gene transfer is likely responsible for the wide distribution of dmdA among diverse taxa, contributing to the homogenization of biogeochemical roles among heterotrophic marine bacterioplankton. Candidate genes for the competing bacterial degradation process that converts DMSP to the climate-active gas dimethylsulfide (DMS) ( dddD and dddL ) occur infrequently in the (2007) GOS metagenome, suggesting either that the key DMS-producing bacterial genes are yet to be identified or that DMS formation by free-living bacterioplankton is insignificant relative to their demethylation activity.  相似文献   

2.
3.
Although bacterioplankton and phytoplankton are generally perceived as closely linked in marine systems, specific interactions between discrete bacterioplankton and phytoplankton populations are largely unknown. However, measurements of bacterioplankton distributions during phytoplankton blooms may indicate specific microbial lineages that are responding to phytoplankton populations, and potentially controlling them by producing allelopathic compounds. Here we use a comprehensive molecular approach to identify, characterize and quantify bacterioplankton community responses to an Oregon coast diatom bloom. Total DAPI counts increased by nearly sevenfold in bloom samples, reaching 5.7 x 10(9) cells l(-1), and lineage-specific cell counts using fluorescence in situ hybridization (FISH) indicated that Bacteria accounted for approximately 89% of observed increases. Several dominant members of the bacterial community present outside the bloom (SAR11 and SAR86) did not contribute significantly to observed increases in bloom samples. Clone library and FISH data indicated that uncultured planctomycetes most closely related to Pirellula, and members of the OM43 clade of beta proteobacteria, reached 0.5 x 10(8) and 1.2 x 10(8) cells l(-1), respectively, and were among the dominant lineages in bloom samples.  相似文献   

4.
Eddies are mesoscale oceanographic features (~ 200 km diameter) that can cause transient blooms of phytoplankton by shifting density isoclines in relation to light and nutrient resources. To better understand how bacterioplankton respond to eddies, we examined depth‐resolved distributions of bacterial populations across an anticyclonic mode‐water eddy in the Sargasso Sea. Previous work on this eddy has documented elevated phytoplankton productivity and diatom abundance within the eddy centre with coincident bacterial productivity and biomass maxima. We illustrate bacterial community shifts within the eddy centre, differentiating populations uplifted along isopycnals from those enriched or depleted at horizons of enhanced bacterial and primary productivity. Phylotypes belonging to the Roseobacter, OCS116 and marine Actinobacteria clades were enriched in the eddy core and were highly correlated with pigment‐based indicators of diatom abundance, supporting developing hypotheses that members of these clades associate with phytoplankton blooms. Typical mesopelagic clades (SAR202, SAR324, SAR406 and SAR11 IIb) were uplifted within the eddy centre, increasing bacterial diversity in the lower euphotic zone. Typical surface oligotrophic clades (SAR116, OM75, Prochlorococcus and SAR11 Ia) were relatively depleted in the eddy centre. The biogeochemical context of a bloom‐inducing eddy provides insight into the ecology of the diverse uncultured bacterioplankton dominating the oligotrophic oceans.  相似文献   

5.
Catalysed reported deposition-FISH and clone libraries indicated that Roseobacter , followed by Bacteroidetes , and some gammaproteobacterial groups such as SAR86, dominated the composition of bacterioplankton in Ría de Vigo, NW Spain, in detriment to SAR11 (almost absent in this upwelling ecosystem). Since we sampled four times during the year, we observed pronounced changes in the structure of each bacterioplankton component, particularly for the Roseobacter lineage. We suggest that such variations in the coastal upwelling ecosystem of Ría de Vigo were associated with the characteristic phytoplankton communities of the four different hydrographical situations: winter mixing, spring bloom, summer stratification, and autumn upwelling. We retrieved new sequences among the major marine bacterial lineages, particularly among Roseobacter , SAR11, and especially SAR86. The spring community was dominated by two Roseobacter clades that had previously been related to phytoplankton blooms. In the other seasons, communities with higher diversity than the spring one were detected.  相似文献   

6.
Organisms of the Roseobacter clade are an important component in marine ecosystems, partially due to their metabolic variety. Not much is known, however, about the physiological diversity of different roseobacters present within one habitat. By using serial dilution cultures with low-nutrient media seven roseobacter strains, co-occurring during a phytoplankton bloom in the southern North Sea, were obtained in this study. Physiological characterization exhibited distinct substrate spectra of the isolates. Although no isolate showed growth on algal osmolyte dimethylsulfoniopropionate (DMSP), feeding experiments revealed that all new strains converted [2H6]DMSP into a variety of volatile compounds. Six strains mainly decomposed DMSP via the demethylation pathway, but four strains were also capable of cleaving DMSP to DMS and acrylate. It is hypothesized that the great physiological diversity of the roseobacters reflects their ability to inhabit different ecological niches and enables the organisms to cope differently with changing substrate supplies during phytoplankton blooms. Denaturing gradient gel electrophoresis and sequencing of excised bands resulted in detection of five additional roseobacters. Three of these sequences showed affiliation with three of the four major clusters of the Roseobacter clade, consisting predominantly of uncultured organisms (i.e. the Roseobacter clade-affiliated (RCA)), the NAC11-7 and the CHAB-I-5 clusters.  相似文献   

7.
The organosulfur compound dimethylsulfoniopropionate (DMSP) is produced by phytoplankton and is ubiquitous in the surface ocean. Once released from phytoplankton, marine bacteria degrade DMSP by either the cleavage pathway to form the volatile gas dimethylsulfide (DMS) or the demethylation pathway, yielding methanethiol (MeSH), which is readily assimilated or oxidized. The enzyme DmdB, a methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, catalyzes the second step in the demethylation pathway and is a major regulatory point. The two forms of DmdB present in the marine roseobacter Ruegeria pomeroyi DSS-3, RPO_DmdB1 and RPO_DmdB2, and the single form in the SAR11 clade bacterium “Candidatus Pelagibacter ubique” HTCC1062, PU_DmdB1, were characterized in detail. DmdB enzymes were also examined from Ruegeria lacuscaerulensis ITI-1157, Pseudomonas aeruginosa PAO1, and Burkholderia thailandensis E264. The DmdB enzymes separated into two phylogenetic clades. All enzymes had activity with MMPA and were sensitive to inhibition by salts, but there was no correlation between the clades and substrate specificity or salt sensitivity. All Ruegeria species enzymes were inhibited by physiological concentrations (70 mM) of DMSP. However, ADP reversed the inhibition of RPO_DmdB1, suggesting that this enzyme was responsive to cellular energy charge. MMPA reversed the inhibition of RPO_DmdB2 as well as both R. lacuscaerulensis ITI-1157 DmdB enzymes, suggesting that a complex regulatory system exists in marine bacteria. In contrast, the DmdBs of the non-DMSP-metabolizing P. aeruginosa PAO1 and B. thailandensis E264 were not inhibited by DMSP, suggesting that DMSP inhibition is a specific adaptation of DmdBs from marine bacteria.  相似文献   

8.
Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur metabolite produced by many phytoplankton species and degraded by bacteria via two distinct pathways with climate-relevant implications. We assessed the diversity and abundance of bacteria possessing these pathways in the context of phytoplankton community composition over a 3-week time period spanning September–October, 2014 in Monterey Bay, CA. The dmdA gene from the DMSP demethylation pathway dominated the DMSP gene pool and was harboured mostly by members of the alphaproteobacterial SAR11 clade and secondarily by the Roseobacter group, particularly during the second half of the study. Novel members of the DMSP-degrading community emerged from dmdA sequences recovered from metagenome assemblies and single-cell sequencing, including largely uncharacterized gammaproteobacteria and alphaproteobacteria taxa. In the DMSP cleavage pathway, the SAR11 gene dddK was the most abundant early in the study, but was supplanted by dddP over time. SAR11 members, especially those harbouring genes for both DMSP degradation pathways, had a strong positive relationship with the abundance of dinoflagellates, and DMSP-degrading gammaproteobacteria co-occurred with haptophytes. This in situ study of the drivers of DMSP fate in a coastal ecosystem demonstrates for the first time correlations between specific groups of bacterial DMSP degraders and phytoplankton taxa.  相似文献   

9.
10.
The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.  相似文献   

11.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

12.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [(35)S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [(35)S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the alpha-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine gamma-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-(3)H]MeSH and [(35)S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine gamma-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 10(6)- to 10(7)-fold higher concentrations.  相似文献   

13.
Processing of the phytoplankton-derived organic sulfur compound dimethylsulfoniopropionate (DMSP) by bacteria was studied in seawater microcosms in the coastal Gulf of Mexico (Alabama). Modest phytoplankton blooms (peak chlorophyll a [Chl a] concentrations of approximately 2.5 microg liter(-1)) were induced in nutrient-enriched microcosms, while phytoplankton biomass remained low in unamended controls (Chl a concentrations of approximately 0.34 microg liter(-1)). Particulate DMSP concentrations reached 96 nM in the enriched microcosms but remained approximately 14 nM in the controls. Bacterial biomass production increased in parallel with the increase in particulate DMSP, and nutrient limitation bioassays in the initial water showed that enrichment with DMSP or glucose caused a similar stimulation of bacterial growth. Concomitantly, increased bacterial consumption rate constants of dissolved DMSP (up to 20 day(-1)) and dimethylsulfide (DMS) (up to 6.5 day(-1)) were observed. Nevertheless, higher DMSP S assimilation efficiencies and higher contribution of DMSP to bacterial S demand were found in the controls compared to the enriched microcosms. This indicated that marine bacterioplankton may rely more on DMSP as a source of S under oligotrophic conditions than under the senescence phase of phytoplankton blooms. Phylogenetic analysis of the bacterial assemblages in all microcosms showed that the DMSP-rich algal bloom favored the occurrence of various Roseobacter members, flavobacteria (Bacteroidetes phylum), and oligotrophic marine Gammaproteobacteria. Our observations suggest that the composition of the bacterial assemblage and the relative contribution of DMSP to the overall dissolved organic sulfur/organic matter pool control how efficiently bacteria assimilate DMSP S and thereby potentially divert it from DMS production.  相似文献   

14.
To characterize bacterioplankton functional assemblages that transform specific components of the coastal seawater dissolved organic carbon (DOC) pool, bromodeoxyuridine (BrdU) was used to label the bacterioplankton cells that were active following addition of single-DOC model compounds: two organic osmolytes [dimethylsulfoniopropionate (DMSP) and glycine betaine (GlyB)] and two aromatic monomers [para-hydroxybenzoic acid (pHBA) and vanillic acid (VanA)]. Bacterial populations were analysed based on in situ fluorescent immunodetection of BrdU incorporation followed by fluorescence-activated cell sorting (FACS). Sorted cells were then characterized by 16S rDNA-based analysis. Populations with high BrdU incorporation level (HI) developed within 8 h of introduction of 100 nM model compound. Terminal restriction fragment length polymorphisms (T-RFLP) analysis indicated that the HI populations in all four amendments were composed of bacteria from the same major taxa (phylum and subphylum levels), but the relative abundance of each differed. High-resolution clone libraries (each containing approximately 200 clones) showed that the HI populations in the GlyB and VanA amendments consisted of both metabolic generalists and specialists within the alpha-Proteobacteria (mainly members of the Roseobacter clade), beta-Proteobacteria and gamma-Proteobacteria (mainly members of Altermonadaceae, Chromatiaceae, Oceanospirillaceae and Pseudomonadaceae). The presence of members of OM60/241, OM185, SAR11, SAR86 and SAR116 in the HI populations indicated that members of these groups can assimilate the model DOC compounds, providing some of the first glimpses into heterotrophy by members of these poorly understood environmental clusters.  相似文献   

15.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

16.
The algal osmolyte, dimethylsulphoniopropionate (DMSP), is abundant in the surface oceans and is the major precursor of dimethyl sulphide (DMS), a gas involved in global climate regulation. Here, we report results from an in situ Lagrangian study that suggests a link between the microbially driven fluxes of dissolved DMSP (DMSPd) and specific members of the bacterioplankton community in a North Sea coccolithophore bloom. The bacterial population in the bloom was dominated by a single species related to the genus Roseobacter , which accounted for 24% of the bacterioplankton numbers and up to 50% of the biomass. The abundance of the Roseobacter cells showed significant paired correlation with DMSPd consumption and bacterioplankton production, whereas abundances of other bacteria did not. Consumed DMSPd (28 nM day−1) contributed 95% of the sulphur and up to 15% of the carbon demand of the total bacterial populations, suggesting the importance of DMSP as a substrate for the Roseobacter -dominated bacterioplankton. In dominating DMSPd flux, the Roseobacter species may exert a major control on DMS production. DMSPd turnover rate was 10 times that of DMS (2.7 nM day−1), indicating that DMSPd was probably the major source of DMS, but that most of the DMSPd was metabolized without DMS production. Our study suggests that single species of bacterioplankton may at times be important in metabolizing DMSP and regulating the generation of DMS in the sea.  相似文献   

17.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

18.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

19.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [35S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [35S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the α-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine γ-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-3H]MeSH and [35S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine γ-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 106- to 107-fold higher concentrations.  相似文献   

20.
The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [(35)S]DMSP ranged between 27 and 51% of 4',6-diamidino-2-phenylindole (DAPI)-positive cells, similar to or slightly lower than the proportion incorporating [(3)H]leucine. In the northwest Mediterranean coast, the proportion of cells incorporating sulfur from [(35)S]DMSP increased from 5 to 42% from January to March, coinciding with the development of a phytoplankton bloom. At the same time, the proportion of cells incorporating [(3)H]leucine increased from 21 to 40%. The combination of AU and fluorescence in situ hybridization (FISH) revealed that the Roseobacter clade (alpha-proteobacteria) accounted for 13 to 43% of the microorganisms incorporating [(35)S]DMSP at both sampling sites. Significant uptake of sulfur from DMSP was also found among members of the gamma-proteobacteria and Cytophaga-Flavobacterium groups. Roseobacter and gamma-proteobacteria exhibited the highest percentage of DAPI-positive cells incorporating (35)S from DMSP (around 50%). Altogether, the application of AU with [(35)S]DMSP combined with FISH indicated that utilization of S from DMSP is a widespread feature among active marine bacteria, comparable to leucine utilization. These results point toward DMSP as an important substrate for a broad and diverse fraction of marine bacterioplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号