首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we describe the synthesis and NMR characterization of four mono- and four dideoxygenated analogs of alpha,alpha-D-trehalose. The symmetrical (2,2'-, 3,3'-, 4,4'- and 6,6'-) dideoxy analogs were obtained via selective protection and subsequent radical deoxygenation of the desired hydroxyl group set. The unsymmetrical (2'-, 3'-, 4'- and 6'-) monodeoxy analogs were synthesized by desymmetrization of alpha,alpha-trehalose and subsequent deoxygenation under radical conditions. Complete assignment of all (1)H and (13)C resonances in the spectra of these deoxytrehaloses was achieved through the extensive use of 2D [(1)H,(1)H] and [(1)H,(13)C] correlation NMR experiments. The synthesis of these trehalose analogs sets the stage for future biochemical and NMR-based studies to probe the substrate interactions of trehalose with the recently identified mycobacterial sulfotransferase Stf0.  相似文献   

2.
In an attempt to alleviate the drug-related toxicity of zidovudine in patients with AIDS, a pro-drug of zidovudine, 5'-[(1,4-dihydro-1-methyl-3-pyridinylcarbonyl)oxy]-3'-azido-2',3'- dideoxythymidine (DP-AZT), has been evaluated. Cellular uptake by H9 cells and peripheral blood lymphocytes (PBL) with zidovudine and DP-AZT showed at least a 50% greater intracellular concentration of DP-AZT within 2 hr. DP-AZT was significantly less toxic to murine bone marrow cells as measured by CFU-E assay. The ED50 concentration to inhibit the production of HIV specific p24 antigen was 0.05 microM for DP-AZT whereas zidovudine required 0.125 microM. These results demonstrated that DP-AZT has a higher therapeutic ratio than zidovudine as an anti-HIV-1 agent.  相似文献   

3.
Chemical and enzymatic syntheses of [5'-3H]adenosine, [5'-3H]guanosine, and [5'-3H]uridine have been developed. The reduction of beta-D-ribo-pentadialdo-1,4-furanosyl derivatives of corresponding bases is used in the chemical synthesis. The maximum molar activity of the labelled products was 220 TBk/mol in reactions with [3H]NaBH4 and 370-740 TBk/mol in reactions with gaseous tritium. The enzymatic synthesis was performed by the rebosylation of heterocyclic bases with nucleoside phosphorylase and [5'-3H]uridine as a ribosyl donor. Nucleoside phosphorylase is proposed to be used in the immobilized form to avoid the decrease of molar activity. Nucleosides labelled with tritium both in ribosyl and heterocyclic moieties were synthesised enzymatically.  相似文献   

4.
5.
[1'-3H]- and [2'-3H]dihydroneopterin triphosphate (NH2TP) were prepared enzymatically from [4-3H]- and [5-3H]glucose and converted to tetrahydrobiopterin (BH4) by an extract from bovine adrenal medulla. The formation of BH4 from both [1'-3H]- and [2'-3H]-NH2TP proceeds with virtually complete loss of the respective tritium label. The breaking of the CH-bond at C-1' is characterized by a kinetic isotope effect of 2.6 +/- 0.5. A smaller kinetic isotope effect of 1.5 +/- 0.2 was found for the breaking of the CH-bond at C-2'.  相似文献   

6.
J C Wu  J Stubbe  J W Kozarich 《Biochemistry》1985,24(26):7569-7573
Incubation of poly(dA-[3'-3H]dU), poly(dA-[5'-3H]dU), or poly(dA-[5'-3H]dT) under a variety of conditions with activated bleomycin resulted in the production of free nucleic acid base, base propenal, and a small amount of 3H2O. Adjustment of the terminated reaction mixture to pH 10 and incubation at 95 degrees C resulted in a time-dependent increase in 3H2O to an amount equal to the amount of free base. If the terminated reaction mixture was incubated with NaBH4 prior to the heat and alkaline treatment, the release of 3H2O was significantly inhibited. These results are consistent with the generation by activated bleomycin of a 4'-ketone yielding free base, with the exchange of the 3'- and 5'-hydrogens by enolization and with the alkaline-induced strand scission occurring from this intermediate.  相似文献   

7.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of 6-oxypurine (2'-deoxy)ribonucleosides, generating (2-deoxy)ribose 1-phosphate and the purine base. Transition-state models for inosine cleavage have been proposed with bovine, human, and malarial PNPs using arsenate as the nucleophile, since kinetic isotope effects (KIEs) are obscured on phosphorolysis due to high commitment factors. The Phe200Gly mutant of human PNP has low forward and reverse commitment factors in the phosphorolytic reaction, permitting the measurement of competitive intrinsic KIEs on both arsenolysis and phosphorolysis of inosine. The intrinsic 1'-(14)C, 1'-(3)H, 2'-(2)H, 9-(15)N, and 5'-(3)H(2) KIEs for inosine were measured for arsenolysis and phosphorolysis. Except for the remote 5'-(3)H(2), and some slight difference between the 2'-(2)H KIEs, all isotope effects originating in the reaction coordinate are the same within experimental error. Hence, arsenolysis and phosphorolysis proceed through closely related transition states. Although electrostatically similar, the volume of arsenate is greater than phosphate and supports a steric influence to explain the differences in the 5'-(3)H(2) KIEs. Density functional theory calculations provide quantitative models of the transition states for Phe200Gly human PNP-catalyzed arsenolysis and phosphorolysis, selected upon matching calculated and experimental KIEs. The models confirm the striking resemblance between the transition states for the two reactions.  相似文献   

8.
Incubation of the pyrimidine [3'-3H]UDP with ribonucleotide reductase resulted in an isotope effect on the conversion to dUDP which varied as a function of pH and allosteric effectors (pH, kH/kT, effector): 6.6, 4.7, ATP; 7.6, 3.3, ATP; 7.6, 2.6, dATP; 7.6, 2.0, TTP; 8.4, 2.8, ATP. During this reaction 3H2O was also released. The lower the pH of the reaction, the larger the isotope effect, and the smaller the amount of 3H2O produced. At 50% conversion of UDP to dUDP and at pH 7.6, approximately 0.5% of total 3H present in solution was volatilized, while at pH 8.4, approximately 0.9% was volatilized. Similar experiments in which the purine [3'-3H]ADP was incubated with ribonucleotide reductase also resulted in an isotope effect on its conversion to dATP which varied as a function of pH (pH, kH/kT with dGTP as an effector); 6.6, 1.9; 7.6, 1.7; 8.6, 1.4. Furthermore, 3H2O was also released as a function of the extent of the reaction. At 50% turnover and pH 7.6, approximately 0.6% of 3H2O was volatilized, while at pH 8.6 approximately 1.25% was released. Two control experiments in which either the B1 subunit of ribonucleotide reductase was inactivated with 2'-chloro-2'-deoxyuridine 5'-diphosphate or the B2 subunit of ribonucleotide reductase was inactivated with 2'-azido-2'-deoxyuridine 5'-diphosphate and then the enzyme incubated with [3'-3H]ADP or [3'-3H]UDP indicated that in neither case was 3H released. Both B1 and B2 subunits are required for cleavage of the 3'-C--H bond. Incubation of [3'-3H]dADP or [3'-3H]dUDP with ribonucleotide reductase produced no measurable release of 3H. These data clearly indicate that conversion of a purine or pyrimidine diphosphate to a deoxynucleotide diphosphate by Escherichia coli ribonucleotide reductase requires cleavage of the 3'-C--H bond of the substrate. The fate of the 3'-H of the substrate was also determined. Incubation of [3'-2H]UDP with ribonucleotide reductase resulted in the production of [3'-2H]dUDP.  相似文献   

9.
1. (5'R)-(5'-2H1)Adenosine [(5'R):(5'S) = 85:15] was prepared by a procedure which involved inter alia the reduction of 6-N-benzoyl-2',3'-O-isopropylidene-5'-oxoadenosine with a reagent obtained from LiAl2H4 and (-)-isoborneol. 2. (5'S)-(5'-2H1)AdoCbl [(5'S):(5'R) = 74:26] (AdoCbl = 5'-deoxyadenosylcobalamin) was synthesized by reacting cobal(I)amin with (5'R)-2'-3'-O-isopropylidene-5'-tosyl-(5'-2H1) adenosine followed by acid hydrolysis to remove the isopropylidene protective group. 3. (5'R)-(5'-2H1)AdoCbl [(5'R):(5'S) = 77:23] was prepared by reacting cobalt(I)amin with (5'S)-5'-chloro-5'-(5'-2H1)deoxyadenosine [(5'S):(5'R) = 80:20] obtained in turn from (5'R)-(5'-2H1)adenosine. The reaction sequence involved two consecutive inversions at the C-5' atom of adenosine 4. Comparison of the 500-MHz 1H-NMR spectra of unlabelled, (5'S)- and (5'R)-(5'-2H1)AdoCbl allowed assignment of the triplet at 0.58 ppm and the doublet at 1.525 ppm to the diastereotopic 5'-HRe and 5'-HSi atoms, respectively. On acidification, these two protons gave rise to two triplets at 0.11 ppm and 1.78 ppm indicating that torsion had occurred around the C-4'--C-5' bond. 5. Samples of (5'R)- and (5'S)-(5'-2H1)AdoCbl were incubated with methylmalonyl-CoA mutase from Propionibacterium shermanii. Examination by 1H-NMR spectroscopy at 500 MHz revealed partial loss and stereochemical scrambling of the deuterium at the 5' position. This indicates transient conversion of the C-5' atom into a torsiosymmetric group and hence cleavage of the cobalt-carbon bond during interaction with the enzyme. The mechanism by which deuterium is lost remains to be elucidated.  相似文献   

10.
[2',2'-(2)H(2)]-indole-3-acetic acid ([2',2'-(2)H(2)]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2',2'-(2)H(2)]-indole-3-acetyl)-beta-D-glucopyranose, [2',2'-(2)H(2)]-2-oxoindole-3-acetic acid, and 1-O-([2',2'-(2)H(2)]-2-oxoindole-3-acetyl)-beta-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.  相似文献   

11.
Poly(dA.dU), which is specifically tritiated at the 1'-, 2'- (ribo configuration), 3'-, or 4'-position of deoxyuridine, has been synthesized and the fate of the tritium has been determined upon degradation of the polymer by bleomycin, Fe(II), and O2. No tritium is labilized from the 1'-3H-labeled polymer as 3H2O; however, the resulting 3-(uridin-1'-yl)-2-propenal (uracil propenal) has the expected specific activity. The 2'-3H-labeled polymer affords 3H2O and no label in the uracil propenal. This result and the lack of solvent incorporation into the uracil propenal suggest that proton abstraction from C-2' to afford the trans-propenal is highly stereospecific. For the 3'-3H-labeled polymer, 3H2O is formed and the specific activity of the uracil propenal is identical to that of the deoxyuridine. This suggests that the labilization of the 3'-H is exclusively associated with free uracil formation. 3H2O is also formed from the 4'-3H-labeled polymer. These findings along with previous studies are consistent with the formation of uracil propenal and free uracil by the trapping of the initially formed 4'-radical species by O2 or by a monooxygen species, respectively.  相似文献   

12.
1. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated by 50% the rate of release of [3H]choline and [3H]phosphorylcholine in rat liver plasma membranes labelled with [3H]choline. About 70% of the radioactivity released in the presence of GTP[S] was [3H]choline and 30% was [3H]phosphorylcholine. 2. The hydrolysis of phosphorylcholine to choline and the conversion of choline to phosphorylcholine did not contribute to the formation of [3H]choline and [3H]phosphorylcholine respectively. 3. The release of [3H]choline from membranes was inhibited by low concentrations of SDS or Triton X-100. Considerably higher concentrations of the detergents were required to inhibit the release of [3H]phosphorylcholine. 4. Guanosine 5'-[beta gamma-imido]triphosphate and guanosine 5'-[alpha beta-methylene]triphosphate, but not adenosine 5'-[gamma-thio]-triphosphate, stimulated [3H]choline release to the same extent as did GTP[S]. The GTP[S]-stimulated [3H]choline release was inhibited by guanosine 5'-[beta-thio]diphosphate, GDP and GTP but not by GMP. 5. It is concluded that, in rat liver plasma membranes, (a) GTP[S]-stimulated hydrolysis of phosphatidylcholine is catalysed predominantly by phospholipase D with some contribution from phospholipase C, and (b) the stimulation of phosphatidylcholine hydrolysis by GTP[s] occurs via a GTP-binding regulatory protein.  相似文献   

13.
Singh V  Lee JE  Núñez S  Howell PL  Schramm VL 《Biochemistry》2005,44(35):11647-11659
Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes reactions linked to polyamine metabolism, quorum sensing pathways, methylation reactions, and adenine salvage. It is a candidate target for antimicrobial drug design. Kinetic isotope effects (KIEs) were measured on the MTAN-catalyzed hydrolysis of 5'-methylthioadenosine (MTA) to determine the transition state structure. KIEs measured at pH 7.5 were near unity due to the large forward commitment to catalysis. Intrinsic KIEs were expressed by increasing the pH to 8.5. Intrinsic KIEs from MTAs labeled at 1'-(3)H, 1'-(14)C, 2'-(3)H, 4'-(3)H, 5'-(3)H, 9-(15)N, and Me-(3)H(3) were 1.160 +/- 0.004, 1.004 +/- 0.003, 1.044 +/- 0.004, 1.015 +/- 0.002, 1.010 +/- 0.002, 1.018 +/- 0.006, and 1.051 +/- 0.002, respectively. The large 1'-(3)H and small 1'-(14)C KIEs indicate that the Escherichia coli MTAN reaction undergoes a dissociative (D(N)A(N)) (S(N)1) mechanism with little involvement of the leaving group or participation of the attacking nucleophile at the transition state, causing the transition state to have significant ribooxacarbenium ion character. A transition state constrained to match the intrinsic KIEs was located with density functional theory [B3LYP/6-31G(d,p)]. The leaving group (N9) is predicted to be 3.0 A from the anomeric carbon. The small beta-secondary 2'-(3)H KIE of 1.044 corresponds to a modest 3'-endo conformation for ribose and a H1'-C1'-C2'-H2' dihedral angle of 53 degrees at the transition state. Natural bond orbital analysis of the substrate and the transition state suggests that the 4'-(3)H KIE is due to hyperconjugation between the lone pair (n(p)) of O3' and the antibonding (sigma) orbital of the C4'-H4' group, and the methyl-(3)H(3) KIE is due to hyperconjugation between the n(p) of sulfur and the sigma of methyl C-H bonds. Transition state analogues that resemble this transition state structure are powerful inhibitors, and their molecular electrostatic potential maps closely resemble that of the transition state.  相似文献   

14.
A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3',4',5',5'-2H4 and -2',3',4',5',5'-2H5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-alpha,beta-D-allofuranose-3,4-d2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 16 (precursor of ribonucleosides-3',4',5',5'-2H4) or to 1-O-methyl-3,5-di-O-benzyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 18 (precursor of ribonucleosides-3',4',5',5'-2H4).  相似文献   

15.
Treatment of a human monocyte-like cell line (U-937) by (2'-5')ApApA, the 5' dephosphorylated product of (2'-5')oligo-isoadenylate [oligo(A)] synthetase, an interferon-induced enzyme, was able to induce differentiation, mimicking the effect of interferon treatment. Treatment of U-937 cells with (2'-5')ApApA resulted in morphologic changes, new (monocyte-associated) membrane antigen expression, and acquisition of the capacity to mediate antibody-dependent cellular cytotoxicity (ADCC). (2'-5')ApA and (3'-5')ApApA were without effect. A myeloid cell line (HL-60) which differentiates in response to other agents, but not to alpha-interferon, was not able to differentiate in response to (2'-5')ApApA, despite the ability of interferon to induce (2'-5')oligo (A) synthetase.  相似文献   

16.
N Zhou  S Manogaran  G Zon  T L James 《Biochemistry》1988,27(16):6013-6020
Exchangeable and nonexchangeable protons of [d(GGTATACC)]2 in aqueous cacodylate solution were assigned from two-dimensional nuclear Overhausser effect (2D NOE) spectra. With phase-sensitive COSY and double quantum filtered COSY (DQF-COSY) experiments, the cross-peaks resulting from deoxyribose ring conformation sensitive proton-proton vicinal couplings, i.e., all 1'-2', 1'-2", 2'-3', and 3'-4' couplings and six from 2"-3' couplings, were observed. From the cross-peak fine structure, the 2',2" proton assignments can be confirmed; coupling constants J1'2' and J1'2" and sums of coupling constants involving H2' and H2" for all residues and H3' for C8 were obtained. The DISCO procedure [Kessler, H., Muller, A., & Oschkinat, H. (1985) Magn. Reson. Chem. 23, 844-852] was used to extract individual 1'-2' and 1'-2" coupling constants. The sum of coupling constants involving H1' or H3' was measured from the one-dimensional spectrum where signal overlap is not a problem. Analysis of the resulting coupling constants and sums of coupling constants, in the manner of Rinkel and Altona [Rinkel, L. J., & Altona, C. (1987) J. Biomol. Struct. Dyn. 4, 621-649], led to the following conclusion: C2'-endo deoxyribose ring conformation is predominant for every residue, but a significant amount of C3'-endo conformation may exist, ranging from 14% to 30%.  相似文献   

17.
A suite of multiple quantum (MQ) HCN-based pulse sequences has been developed for the purpose of collecting dipolar coupling data in labeled nucleic acids. All the pulse sequences are based on the robust MQ-HCN experiment which has been utilized for assignment purposes in labeled nucleic acids for a number of years and provides much-needed resolution for the dipolar coupling measurements. We have attempted to collect multiple couplings centered on the 13C1' and 13C6/8 positions. Six pulse sequences are described, one each for measurement of one-bond 13C1'-1H1' and 13C6/8-1H6/8 couplings, one for measurement of one-bond 13C1'-15N and two-bond 1H1'-15N couplings, one for measurement of one-bond 13C6/8-15N and two-bond 1H6/8-15N couplings, one for measurement of one-bond 13C1'- 13C2' and two-bond 1H1'-13C2' couplings, and one for measurement of one-bond 13C6-13C5 and two-bond 1H6-13C5 couplings in the bases of C and T. These sequences are demonstrated for a labeled 18 bp DNA duplex in a 47 kDa ternary complex of DNA, CBFbeta, and the CBFalpha Runt domain, thus clearly demonstrating the robustness of the pulse sequences even for a very large complex.  相似文献   

18.
19.
The stereochemistry for hydrogen removal from pyridoxamine 5'-phosphate with liver pyridoxine (pyridoxamine)-5'-phosphate oxidase was examined to determine whether or not there are significant steric constraints at the substrate region of the active site of the oxidase. For this, pyridoxal 5'-phosphate was reduced with tritium-labeled sodium borohydride in ammoniacal solution to yield racemically labeled [4',4'-3H]pyridoxamine 5'-phosphate which was then chemically or enzymatically oxidized to [4'-3H]pyridoxal 5'-phosphate. This latter was used as coenzyme with either L-aspartate (L-glutamate) aminotransferase and L-glutamate or L-glutamate decarboxylase and alpha-methyl-DL-glutamate to generate [4'-3H]pyridoxamine 5'-phosphate known to be labeled in the R-position. Reaction of the oxidase with the pro-R as well as the pro-R,S-labeled substrates followed by isolation of [4'-3H]pyridoxal 5'-phosphate and 3H2O revealed only half the radioactivity was abstracted from the original substrate in either case. Hence, the oxidase is not stereospecific and equally well catalyzes removal of either pro-R or pro-S hydrogen from the 4-methylene of pyridoxamine 5'-phosphate.  相似文献   

20.
Adenosine 5'-phosphate was synthesized with specific heavy atom substitutions to permit measurement of V/K kinetic isotope effects for the N-glycohydrolase activity of the allosteric AMP nucleosidase and the acid-catalyzed solvolysis of these compounds. The effects of allosteric activation on the kinetic isotope effects together with the kinetic mechanism of AMP nucleosidase [DeWolf, W. E., Jr., Emig, F. A., & Schramm, V. L. (1986) Biochemistry 25, 4132-4140] indicate that the kinetic isotope effects are fully expressed. Comparison of individual primary and secondary kinetic isotope effects with combined isotope effects and the isotope effect of the reverse reaction indicated that kinetic isotope effects in AMP nucleosidase arise from a single step in the reaction mechanism. Under these conditions, kinetic isotope effects can be used to interpret transition-state structure for AMP nucleosidase. Changes in kinetic isotope effects occurred as a function of allosteric activator, demonstrating that allosteric activation alters transition-state structure for AMP nucleosidase. Kinetic isotope effects, expressed as [V/K(normal isotope]/[V/K(heavy isotope)], were observed with [2'-2H]AMP (1.061 +/- 0.002), [9-15N]AMP (1.030 +/- 0.003), [1'-2H]AMP (1.045 +/- 0.002), and [1'-14C]AMP (1.035 +/- 0.002) when hydrolyzed by AMP nucleosidase in the absence of MgATP. Addition of MgATP altered the [2'-2H]AMP effect (1.043 +/- 0.002) and the [1'-2H]AMP effect (1.030 +/- 0.003) and caused a smaller decrease of the 14C and 15N effects. Multiple heavy atom substitutions into AMP caused an increase in observed isotope effects to 1.084 +/- 0.004 for [1'-2H,1'-14C]AMP and to 1.058 +/- 0.002 for [9-15N,1'-14C]AMP with the enzyme in the absence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号