首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.  相似文献   

4.
5.
Evolution has shaped all living organisms on Earth, although many details of this process are shrouded in time. However, it is possible to see, with one's own eyes, evolution as it happens by performing experiments in defined laboratory conditions with microbes that have suitably fast generations. The longest-running microbial evolution experiment was started in 1988, at which time twelve populations were founded by the same strain of Escherichia coli. Since then, the populations have been serially propagated and have evolved for tens of thousands of generations in the same environment. The populations show numerous parallel phenotypic changes, and such parallelism is a hallmark of adaptive evolution. Many genetic targets of natural selection have been identified, revealing a high level of genetic parallelism as well. Beneficial mutations affect all levels of gene regulation in the cells including individual genes and operons all the way to global regulatory networks. Of particular interest, two highly interconnected networks -- governing DNA superhelicity and the stringent response -- have been demonstrated to be deeply involved in the phenotypic and genetic adaptation of these experimental populations.  相似文献   

6.
We show, using gel retardation, that crude Escherichia coli cell extracts contain a protein which binds specifically to DNA fragments carrying either end of the phage Mu genome. We have identified this protein as Fis, a factor involved in several site-specific recombinational switches. Furthermore, we show that induction of a Mucts62 prophage in a fis lysogen occurs at a lower temperature than that of a wild-type strain, and that spontaneous induction of Mucts62 is increased in the fis mutant. DNasel footprinting using either crude extracts or purified Fis indicate that binding on the left end of Mu occurs at a site which overlaps a weak transposase binding site. Thus, Fis may modulate Mu growth by influencing the binding of transposase, or other proteins, to the transposase binding site(s), in a way similar to its influence on Xis binding in phage lambda.  相似文献   

7.
8.
Bacterial cells respond to the deleterious effects of reactive oxygen species by inducing the expression of antioxidant defence genes. Here we show that treatment with hydrogen peroxide leads to a transient decrease in DNA negative supercoiling. We also report that hydrogen peroxide activates topA P1 promoter expression. The peroxide-dependent topA P1 activation is independent of oxyR, but is mediated by Fis. This nucleoid-associated protein binds to the promoter region of topA. We also show that a fis deficient mutant strain is extremely sensitive to hydrogen peroxide. Our results suggest that topA activation by Fis is an important component of the Escherichia coli response to oxidative stress.  相似文献   

9.
10.
11.
12.
13.
14.
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.  相似文献   

15.
16.
17.
The Escherichia coli protein Fis has been shown to bind a single site in the recombination region of phage lambda and to stimulate excisive recombination in vitro (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). We demonstrate that mutant strains deficient in fis expression show dramatically reduced rates of lambda excision in vivo. Phage yields after induction of a stable lysogen are reduced more than 200-fold in fis cells. The defect observed in phage yield is not due to inefficient phage replication or lytic growth. Direct examination of excisive recombination products reveals a severe defect in the rate of recombination in the absence of Fis. The excision defect observed in fis cells can be fully reproduced in fis+ cells by using phages that lack the Fis binding site on attR, indicating that the entire stimulatory effect of Fis on excisive recombination is due to binding at that site.  相似文献   

18.
19.
We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo.  相似文献   

20.
An ompB strain of Escherichia coli K-12 lacking major outer membrane proteins OmpC and OmpF was used to isolate a pair of mutants that have restored the ability to synthesize either OmpC or OmpF protein. These mutants were found to produce the respective proteins constitutively under the several conditions where the synthesis in the wild-type strain was markedly repressed; namely, in the absence of the ompB gene function, under restrictive medium conditions, or upon lysogenization with phage PA-2. The mutations ompCp1 and ompFp9 responsible for such synthesis were shown to be located in the close vicinity of the corresponding structural genes, ompC and ompF. Moreover, the mutations affect the expression of these genes in a cis-dominant fashion. Taken together with other evidence, it was suggested that ompCp1 and ompFp9 represent regulatory site mutations occurring at the promoter regions of ompC and ompF respectively. Relevance of these findings to the genetic control of outer membrane protein synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号