首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group G streptococci (GGS) are important bacterial pathogens in humans. Here, we investigated the interactions between GGS and the contact system, a procoagulant and proinflammatory proteolytic cascade that, upon activation, also generates antibacterial peptides. Two surface proteins of GGS, protein FOG and protein G (PG), were found to bind contact system proteins. Experiments utilizing contact protein-deficient human plasma and isogenic GGS mutant strains lacking FOG or PG showed that FOG and PG both activate the procoagulant branch of the contact system. In contrast, only FOG induced cleavage of high molecular weight kininogen, generating the proinflammatory bradykinin peptide and additional high molecular weight kininogen fragments containing the antimicrobial peptide NAT-26. On the other hand, PG protected the bacteria against the antibacterial effect of NAT-26. These findings underline the significance of the contact system in innate immunity and demonstrate that GGS have evolved surface proteins to exploit and modulate its effects.  相似文献   

2.
The treatment of streptococci, groups C and G, with bromocyanogen made it possible to isolate surface G protein, capable of binding human serum albumin (HSA) and polyclonal IgG. In this work the presence of G protein in all staphylococcal strains, groups C and G, is shown. The differences between the strains by the level of expression, molecular weight and functional activity of G protein, extracted from streptococci of groups C and G, permitted the identification of 3 groups of strains, containing the molecules of G protein with different numbers of IgG- and HSA-binding domains: with 3 IgG- and HSA-binding domains, with 2 IgG- and HSA-binding domains and with only 2 IgG-binding domains. Each strain under study expressed only one of the molecule of G protein. The work shows the possibility of the identification of streptococci, groups C and G, by the molecular characteristics of G proteins themselves and their respective coding genes.  相似文献   

3.
Streptococcus pyogenes is a major bacterial pathogen and a potent inducer of inflammation causing plasma leakage at the site of infection. A combination of label-free quantitative mass spectrometry-based proteomics strategies were used to measure how the intracellular proteome homeostasis of S. pyogenes is influenced by the presence of human plasma, identifying and quantifying 842 proteins. In plasma the bacterium modifies its production of 213 proteins, and the most pronounced change was the complete down-regulation of proteins required for fatty acid biosynthesis. Fatty acids are transported by albumin (HSA) in plasma. S. pyogenes expresses HSA-binding surface proteins, and HSA carrying fatty acids reduced the amount of fatty acid biosynthesis proteins to the same extent as plasma. The results clarify the function of HSA-binding proteins in S. pyogenes and underline the power of the quantitative mass spectrometry strategy used here to investigate bacterial adaptation to a given environment.  相似文献   

4.
Recent epidemiological data on diseases caused by beta-hemolytic streptococci belonging to Lancefield group C and G (GCS, GGS) underline that they are an emerging threat to human health. Among various virulence factors expressed by GCS and GGS isolates from human infections, M and M-like proteins are considered important because of their anti-phagocytic activity. In addition, protein G has been implicated in the accumulation of IgG on the bacterial surface through non-immune binding. The function of this interaction, however, is still unknown. Using isogenic mutants lacking protein G or the M-like protein FOG (group G streptococci), respectively, we could show that FOG contributes substantially to IgG binding. A detailed characterization of the interaction between IgG and FOG revealed its ability to bind the Fc region of human IgG and its binding to the subclasses IgG1, IgG2, and IgG4. FOG was also found to bind IgG of several animal species. Surface plasmon resonance measurements indicate a high affinity to human IgG with a dissociation constant of 2.4 pm. The binding site was localized in a central motif of FOG. It has long been speculated about anti-opsonic functions of streptococcal Fc-binding proteins. The presented data for the first time provide evidence and, furthermore, indicate functional differences between protein G and FOG. By obstructing the interaction between IgG and C1q, protein G prevented recognition by the classical pathway of the complement system. In contrast, IgG that was bound to FOG remained capable of binding C1q, an effect that may have important consequences in the pathogenesis of GGS infections.  相似文献   

5.
Streptococcal protein G (SpG) is a bacterial cell surface receptor exhibiting affinity to both human immunoglobulin (IgG) and human serum albumin (HSA). Interestingly, the serum albumin and immunoglobulin-binding activities have been shown to reside at functionally and structurally separated receptor domains. The binding domain of the HSA-binding part has been shown to be a 46-residue triple alpha-helical structure, but the binding site to HSA has not yet been determined. Here, we have investigated the precise binding region of this bacterial receptor by protein engineering applying an alanine-scanning procedure followed by binding studies by surface plasmon resonance (SPR). The secondary structure as well as the HSA binding of the resulting albumin-binding domain (ABD) variants were analyzed using circular dichroism (CD) and affinity blotting. The analysis shows that the HSA binding involves residues mainly in the second alpha-helix.  相似文献   

6.
Streptococcal protein G. Gene structure and protein binding properties   总被引:7,自引:0,他引:7  
Protein G was solubilized from 31 human group C and G streptococcal strains with the muralytic enzyme mutanolysin. As judged by the mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the binding patterns of the solubilized protein G molecules in Western blot experiments, the strains could be divided into three groups, represented by the group G streptococcal strains G148 and G43 and the group C streptococcal strain C40. The 65-kDa G148 protein G and the 58-kDa C40 protein G showed affinity for both immunoglobulin G (IgG) and human serum albumin (HSA), whereas the 40-kDa G43 protein G bound only IgG. Despite the different molecular patterns, the three protein G species had identical NH2-terminal amino acid sequences. Apart from the 65-kDa peptide, digestion of G148 streptococci with mutanolysin also produced a 52-kDa IgG- and HSA-binding peptide and a 14-kDa HSA-binding peptide. It was demonstrated that these peptides resulted from cleavage of 65-kDa protein G by proteolytic components in the mutanolysin preparation. The protein G genes of the C40 and G43 strains were cloned and sequenced, and their structure was compared to the previously published sequence of the G148 protein G gene. As compared to G148, both the C40 and G43 genes lacked a 210-base pair fragment in the IgG-binding region, accounting for the 10-fold lower affinity of these proteins for IgG. The G43 gene also lacked a 450-base pair fragment in the 5'-end of the gene, explaining why the G43 protein G did not bind HSA. The differences in protein G structure did not correlate with the clinical origin of the strains used in this study. The IgG-binding region of protein G was further mapped. Thus, a peptide corresponding to a single IgG-binding unit was obtained by the cloning and expression of a 303-base pair polymerase chain reaction-generated DNA fragment. The affinity of this 11.5-kDa peptide for human IgG was 8.0 x 10(7) M-1, as determined by Scatchard plots. Finally, a 55-amino acid-long synthetic peptide, corresponding to one of the three repeated domains in the COOH-terminal half of strain G148 protein G, effectively blocked binding of protein G to IgG.  相似文献   

7.
Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.  相似文献   

8.
MIG/CXCL9 belongs to the CXC family of chemokines and participates in the regulation of leukocyte-trafficking and angiogenesis. Certain chemokines, including human MIG/CXCL9, exert strong antibacterial activity in vitro, although the importance of this property in vivo is unknown. In the present study, we investigated the expression and a possible role for MIG/CXCL9 in host defense during mucosal airway infection caused by Streptococcus pneumoniae in vivo. We found that intranasal challenge of C57BL/6 wild-type mice with pneumococci elicited production of high levels of MIG/CXCL9 in the lungs via the MyD88-dependent signaling pathway. Whereas both human and murine MIG/CXCL9 showed efficient killing of S. pneumoniae in vitro, MIG/CXCL9 knock-out mice were not more susceptible to pneumococcal infection. Our data demonstrate that, in vivo this chemokine probably has a redundant role, acting together with other antibacterial peptides and chemokines, in innate and adaptive host defense mechanisms against pneumococcal infections.  相似文献   

9.
The anaerobic bacterium Finegoldia magna is part of the human commensal microbiota, but is also an important opportunistic pathogen. This bacterium expresses a subtilisin-like serine proteinase, SufA, which partially degrade the antibacterial chemokine MIG/CXCL9. Here, we show that MIG/CXCL9 is produced by human keratinocytes in response to inflammatory stimuli. In contrast to the virulent human pathogen Streptococcus pyogenes, the presence of F. magna had no enhancing effect on the MIG/CXCL9 expression by keratinocytes, suggesting poor detection of the latter by pathogen-recognition receptors. When MIG/CXCL9 was exposed to SufA-expressing F. magna, the molecule was processed into several smaller fragments. Analysis by mass spectrometry showed that SufA cleaves MIG/CXCL9 at several sites in the COOH-terminal region of the molecule. At equimolar concentrations, SufA-generated MIG/CXCL9 fragments were not bactericidal against F. magna, but retained their ability to kill S. pyogenes. Moreover, the SufA-generated MIG/CXCL9 fragments were capable of activating the angiostasis-mediating CXCR3 receptor, which is expressed on endothelial cells, in an order of magnitude similar to that of intact MIG/CXCL9. F. magna expresses a surface protein called FAF that is released from the bacterial surface by SufA. Soluble FAF was found to bind and inactivate the antibacterial activity of MIG/CXCL9, thereby further potentially promoting the survival of F. magna. The findings suggest that SufA modulation of the inflammatory response could be a mechanism playing an important role in creating an ecologic niche for F. magna, decreasing antibacterial activity and suppressing angiogenesis, thus providing advantage in survival for this anaerobic opportunist compared with competing pathogens during inflammation.The mucosal surfaces and skin of the human body are colonized by a large number of bacterial species constituting the normal microbiota. In contrast to pathogens, these commensals usually do not elicit any inflammatory responses in epithelial tissues of the healthy host (1). The Gram-positive coccus Finegoldia magna is part of the anaerobic normal microbiota associated with the skin (2), but it also inhabits the oro-pharynx, gastrointestinal, and urogenital tracts (3). During disturbed homeostasis, this bacterium becomes an important opportunistic pathogen; associated with several clinical conditions, such as soft tissue infections, wound infections, bone/joint infections, and vaginosis (35). Among anaerobic cocci of the normal microbiota, F. magna is the species most commonly isolated from clinical conditions (3).Recognition of bacteria and their products by cells residing in the submucosal tissues, for example dendritic cells, triggers an inflammatory response leading to production of host defense molecules, including chemokines. Chemokines comprise a large family of peptides that are key players in inflammation by regulating leukocyte trafficking and activation. They are divided into four groups, XC, CC, CXC, and CX3C, depending on the arrangement of conserved cysteine residues in their NH2 terminus (6). The CXC subfamily can be further divided into ELR-positive and ELR-negative respectively, based on the presence or absence of the sequence motif glutamic acid-leucine-arginine (ELR) NH2 terminal to the first cysteine. IFN-γ, a key cytokine produced during bacterial infection, induces expression of the ELR-negative CXC-chemokine MIG/CXCL9 (Monokine Induced by Gamma-interferon)3 (7). MIG/CXCL9 binds and activates a G-protein-coupled seven transmembrane receptor, CXCR3, which is present on eosinophils, activated T cells (CD8+), and NK cells (8). In addition to its ability to recruit and activate leukocytes, MIG/CXCL9 possesses angiostatic properties through activation of CXCR3 expressed on endothelial cells, and it also exerts potent antibacterial properties (911). Upon IFN-dependent inflammation, for example during bacterial infection, this chemokine is produced by epithelial cells and participates in activities of both innate and adaptive immunity (10, 1214).The finding that epithelial cells recognize important human pathogens, such as Streptococcus pyogenes, leading to an increased MIG/CXCL9 production (10, 12) raised the question whether an opportunistic pathogen like F. magna could be recognized in a similar fashion. In skin F. magna is localized to the epidermis where they adhere to basement membranes through an interaction with the basement membrane protein BM-40 (15). Binding to BM-40 is mediated by the surface protein FAF (F. magna adhesion factor) that is expressed by more than 90% of F. magna isolates (15). Bacteria, both commensals and pathogens, express proteases that are important both during colonization and invasion (16). In the case of F. magna, most strains express a subtilisin-like enzyme, SufA (Subtilase of Finegoldia magna), which is associated with the bacterial surface, but also secreted in substantial amounts during bacterial growth (17). Studies on the proteolytic activity of SufA demonstrated that the enzyme cleaves and inactivates antibacterial molecules like LL-37 and MIG/CXCL9 (17). Here, we show that MIG/CXCL9, produced by human keratinocytes in response to inflammatory stimuli, is degraded by SufA-expressing F. magna. The generated MIG/CXCL9 fragments are still able to activate the MIG/CXCL9 receptor, CXCR3 and kill S. pyogenes, while F. magna is left unaffected. This modulation of the MIG/CXCL9 activities promotes the survival of F. magna during inflammation.  相似文献   

10.
Many bactericide species express surface proteins that interact with human serum albumin (HSA). Protein PAB from the anaerobic bacterium Finegoldia magna (formerly Peptostreptococcus magnus) represents one of these proteins. Protein PAB contains a domain of 53 amino acid residues known as the GA module. GA homologs are also found in protein G of group C and G streptococci. Here we report the crystal structure of HSA in complex with the GA module of protein PAB. The model of the complex was refined to a resolution of 2.7 A and reveals a novel binding epitope located in domain II of the albumin molecule. The GA module is composed of a left-handed three-helix bundle, and residues from the second helix and the loops surrounding it were found to be involved in HSA binding. Furthermore, the presence of HSA-bound fatty acids seems to influence HSA-GA complex formation. F. magna has a much more restricted host specificity compared with C and G streptococci, which is also reflected in the binding of different animal albumins by proteins PAB and G. The structure of the HSA-GA complex offers a molecular explanation to this unusually clear example of bacterial adaptation.  相似文献   

11.
Cell surface protein receptors in oral streptococci   总被引:19,自引:0,他引:19  
Abstract Streptococci have a vast repertoire of adherence properties which include binding to human tissue components, epithelial cells and to other bacterial cells. These interactions are determined by the expression of cell-surface receptors some of which are species-specific. In the oral streptococci, two families of surface protein receptors with highly conserved amino acid sequences have been identified. The antigen I/II family of polypeptides are wall-associated high molecular mass proteins (158–166 kDa) with several binding functions that may be attributed to different domains of the receptor molecules. The LraI family of polypeptides are surface-associated lipoproteins (32–33 kDa) involved in adherence of streptococci to salivary glycoprotein pellicle and to oral Actinomyces . A region of amino acid sequence similarity is evident amongst members of the two protein families in Streptococcus gordonii . Ligand-binding specificities of these receptor polypeptides may account for species-specific adherence and site-directed colonization of streptococci within the human oral cavity.  相似文献   

12.
Determination of the cell-surface hydrophobicity of group B streptococci by hydrophobic interaction chromatography on phenyl-Sepharose revealed that human and bovine group B streptococcal isolates with protein surface antigens, either alone or in combination with polysaccharide antigens, were mainly hydrophobic, whereas those with polysaccharide antigens alone were mainly hydrophilic. Removal of capsular neuraminic acid enhanced, and pronase treatment reduced, surface hydrophobicity. The hydrophobic surface proteins, solubilized by mutanolysin treatment of the bacteria and isolated by hydrophobic interaction chromatography, appeared in SDS-PAGE as numerous protein bands. Staphylococcal carrier cells loaded with antibodies produced against hydrophobic surface proteins agglutinated specifically with hydrophobic group B streptococci. No agglutination reaction was observed with hydrophilic cultures. Hydrophobic group B streptococci adhered to buccal epithelial cells in significantly higher numbers than did hydrophilic cultures. The adherence of group B streptococci to epithelial cells was inhibited in the presence of isolated hydrophobic proteins and in the presence of specific antibodies produced against hydrophobic proteins. The results of this study demonstrate a close relation between the occurrence of type-specific antigens, surface hydrophobicity and the adherence of group B streptococci to epithelial cells.  相似文献   

13.
Binding proteins that have high affinities for mammalian plasma proteins that are expressed on the surface of bacteria have proven valuable for the purification and detection of several biologically important molecules from human and animal plasma or serum. In this study, we have isolated a high affinity albumin-binding molecule from a group G streptococcal isolate of bovine origin and have demonstrated that the isolated protein can be biotinylated without loss of binding activity and can be used as a tracer for quantification of human serum albumin (HSA). The binding protein can be immobilized and used as a selective capture reagent in a competitive ELISA format using a biotinylated HSA tracer. In this assay format, the sensitivity of detection for 50% inhibition of binding of HSA was less than 1 μg/ml. When attached to the bacterial surface, this binding protein can be used to deplete albumin from human plasma, as analyzed by surface-enhanced laser desorption ionization time of flight mass spectrometry.  相似文献   

14.
Monokine induced by IFN-gamma (MIG; CXC chemokine ligand (CXCL)9) is important in T lymphocyte recruitment in organ transplantation. However, it is not known whether this chemokine, in addition to its chemotactic properties, exerts any effect on T lymphocyte effector functions. For in vivo studies, we used a previously characterized murine model of chronic rejection. The recipient mice were treated with anti-MIG/CXCL9 Ab; graft-infiltrating cells were analyzed for IFN-gamma production. For in vitro studies, exogenous CXCR3 ligands were added to CD4 lymphocytes in MLRs, and the proliferative responses were measured. Separate experiments quantitated the number of IFN-gamma-producing cells in MLRs by ELISPOT. Neutralization of MIG/CXCL9, in the in vivo model, resulted in significant reduction in the percentage of IFN-gamma-producing graft-infiltrating T lymphocytes. In vitro experiments demonstrated that 1) exogenous MIG/CXCL9 stimulated CD4 lymphocyte proliferation in a MHC class II-mismatched MLR, 2) MIG/CXCL9 also increased the number of IFN-gamma-producing CD4 lymphocytes in ELISPOT, 3) neutralization of MIG/CXCL9 in MLR reduced T lymphocyte proliferation, 4) IFN-gamma-inducible protein 10/CXCL10 and IFN-inducible T cell alpha chemoattractant/CXCL11 had similar effects on T lymphocyte proliferation, 5) MIG/CXCL9 stimulated T lymphocyte proliferation in MHC class I- and total MHC-mismatched MLRs, 6) neutralization of CXCR3 reduced MIG/CXCL9-induced T lymphocyte proliferation and the number of IFN-gamma-positive spots on ELISPOT, and 7) the proliferative effects of MIG/CXCL9 were mediated via an IL-2-independent pathway and were controlled by IFN-gamma. This study demonstrates that MIG/CXCL9 stimulates T lymphocyte proliferation and effector cytokine production, in addition to its chemotactic effects. This novel observation expands our current understanding of MIG/CXCL9 biology beyond that of mediating T cell trafficking.  相似文献   

15.
Genetic analysis of adherence by oral streptococci   总被引:4,自引:0,他引:4  
Streptococci are one of the most successful bacterial colonizers of the human body and are major components of oral biofilms. The bacterial cells express multiple cell-surface adhesins that are responsible for the ability of streptococci to adhere to a wide range of substrates which include salivary and serous proteins, epithelial cells and other bacterial cells. Analysis of adherence-defective mutants has indicated the importance of high molecular mass wall-associated polypeptides and of enzymes catalyzing extracellular glucan polysaccharide synthesis to the adherence and accumulation of oral streptococci. The analysis of isogenic mutants of streptococci, generated through insertional inactivation (or allelic exchange), has confirmed the essential roles of specific surface polypeptides both to adhesive processes and to correct assembly of the cell wall layers.  相似文献   

16.
Aside from its mechanical barrier function, bronchial epithelium plays an important role both in the host defense and in the pathogenesis of inflammatory airway disorders. To investigate its role in lung defense, the effect of a bacterial cell wall protein, the outer membrane protein A from Klebsiella pneumoniae (kpOmpA) on bronchial epithelial cells (BEC) was evaluated on adhesion molecule expression and cytokine production. Moreover, the potential implication of this mechanism in kpOmpA-induced lung inflammation was also determined. Our in vitro studies demonstrated that kpOmpA strongly bound to BEAS-2B cells, a human BEC line, and to BEC primary cultures, resulting in NF-kappaB signaling pathway activation. Exposure to kpOmpA increased ICAM-1 mRNA and cell surface expression, as well as the secretion of IL-6, CXC chemokine ligand (CXCL)1, CXCL8, C-C chemokine ligand 2, CXCL10 by BEAS-2B cells, and BEC primary cultures (p < 0.005). We analyzed in vivo the consequences of intratracheal injection of kpOmpA to BALB/c mice. In kpOmpA-treated mice, a transient neutrophilia (with a maximum at 24 h) was observed in bronchoalveolar lavage and lung sections. In vivo kpOmpA priming induced bronchial epithelium activation as evaluated by ICAM-1 and CXCL1 expression, associated with the secretion of CXCL1 and CXCL5 in bronchoalveolar lavage fluids. In the lung, an increased level of the IL-6, CXCL1, CXCL5, CXCL10 mRNA was observed with a maximum at 6 h. These data showed that kpOmpA is involved in host defense mechanism by its ability to activate not only APC but also BEC, resulting in a lung neutrophilia.  相似文献   

17.
Certain chemokines possess anti-angiogenic and antibacterial activity, in addition to their ability to recruit leukocytes. Herein, we demonstrate that CXCL9/MIG induces the expression, by a monocytic cell line and peripheral blood mononuclear cells, of a variety of chemokines including CXCL8/IL-8, CCL3/MIP-1α, CCL4/MIP-1β, CCL2/MCP-1 in a pertussis toxin insensitive manner. Similarly, another cationic chemokine CCL20/MIP-3α, but not the non-cationic chemokines CCL2 or CCL3, stimulated monocytic cells to produce substantial amounts of CXCL8 and CCL3. Microarray experiments demonstrated that CXCL9, but not CCL2, induced the expression of hundreds of genes, many of which have known or proposed immunomodulatory functions. Induction of CXCL8 required the p38 and ERK1/2 mitogen-activated protein kinases but not NFκB, JAK-STAT or JNK signaling pathways. These results collectively demonstrate that CXCL9 has immunomodulatory functions that are not mediated through a G-protein coupled receptor and may possess additional roles in host defenses against infection.  相似文献   

18.
Dysregulation of cytokines and chemokines during human immunodeficiency virus 1 (HIV-1) and simian immunodeficiency virus (SIV) infection is thought to be critical in the progression of acquired immunodeficiency syndrome (AIDS). To evaluate the potential role of Th1-agonist chemokines in disease progression during AIDS, we assessed CXCL9/MIG and CXCL10/IP-10 expression simultaneously in the periphery and lymphoid tissues of SIV-infected animals at a single-cell level by flow cytometry. We optimized intracellular staining and analysis of CXCL9/MIG and CXCL10/IP-10 production in human leukocyte antigen (HLA)-DR+ macaque cells by flow cytometry using cross-reactive antibodies against human chemokines. We observed an upregulation of CXCL9/MIG and CXCL10/IP-10 production in both the periphery and lymph nodes of infected animals compared with na?ve controls. Animals with higher viral loads had higher levels of CXCL9/MIG and CXCL10/IP-10 producing cells compared with animals with low viral loads. Analysis of cells bearing the receptor (CXCR3) for CXCL9/MIG and CXCL10/IP-10 revealed increased number of CXCR3+ cells in the lymph nodes of infected animals. Importantly, an inverse correlation (P < 0.05) between CXCL9/MIG and CXCL10/IP-10 production, both in the periphery and lymph nodes, and peripheral CD4+ T-cell numbers was observed. These findings provide further evidence that dysregulation of Th1 agonist chemokines might contribute to the ultimate immunopathology during AIDS.  相似文献   

19.
Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium. While invasion has been thoroughly investigated, it is unknown how Shigella first attaches to the epithelium. Previous literature suggests that Shigella utilizes adhesins that are induced by environmental signals, including bile salts, encountered in the small intestine prior to invasion. We hypothesized that bile would induce adherence factors to facilitate attachment to colonic epithelial cells. To test our hypothesis, S. flexneri strain 2457T was subcultured in media containing bile salts, and the ability of the bacteria to adhere to the apical surface of polarized T84 epithelial cells was measured. We observed a significant increase in adherence, which was absent in a virulence plasmid-cured strain and a type-III secretion system mutant. Microarray expression analysis indicated that the ospE1/ospE2 genes were induced in the presence of bile, and bile-induced adherence was lost in a ΔospE1/ΔospE2 mutant. Further studies demonstrated that the OspE1/OspE2 proteins were localized to the bacterial outer membrane following exposure to bile salts. The data presented are the first demonstration that the OspE1/OspE2 proteins promote initial adherence to the intestinal epithelium. The adhesins required for Shigella attachment to the colonic epithelium may serve as ideal targets for vaccine development.  相似文献   

20.
A novel mechanism for enhancement of adherence of Staphylococcus aureus to host components is described. A secreted protein, Eap (extracellular adherence protein), was purified from the supernatant of S. aureus Newman and found to be able to bind to at least seven plasma proteins, e.g., fibronectin, the alpha-chain of fibrinogen, and prothrombin, and to the surface of S. aureus. Eap bound much less to cells of Staphylococcus epidermidis, Streptococcus mutans, or Escherichia coli. The protein can form oligomeric forms and is able to cause agglutination of S. aureus. Binding of S. aureus to fibroblasts and epithelial cells was significantly enhanced by addition of Eap, presumably due to its affinity both for plasma proteins on the cells and for the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号