首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.  相似文献   

2.
Limited information is available concerning the existence of a cholinergic system in the human Achilles tendon. We have studied pain-free normal Achilles tendons and chronically painful Achilles tendinosis tendons with regard to immunohistochemical expression patterns of the M(2) muscarinic acetylcholine receptor (M(2)R), choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). M(2)R immunoreactivity was detected in the walls of blood vessels. As evidenced via parallel staining for CD31 and alpha-smooth muscle actin, most M(2)R immunoreactivity was present in the endothelium. M(2)R immunoreactivity also occured in tenocytes, which regularly immunoreact for vimentin. The degree of M(2)R immunoreactivity was highly variable, tendinosis tendons that exhibit hypercellularity and hypervascularity showing the highest levels of immunostaining. Immunoreaction for ChAT and VAChT was detected in tenocytes in tendinosis specimens, particularly in aberrant cells. In situ hybridization revealed that mRNA for ChAT is present in tenocytes in tendinosis specimens. Our results suggest that autocrine/paracrine effects occur concerning the tenocytes in tendinosis. Up-regulation/down-regulation in the levels of M(2)R immunoreactivity possibly take place in tenocytes and blood vessel cells during the various stages of tendinosis. The presumed local production of acetylcholine (ACh), as evidenced by immunoreactivity for ChAT and VAChT and the detection of ChAT mRNA, appears to evolve in response to tendinosis. These observations are of importance because of the well-known vasoactive, trophic, and pain-modulating effects that ACh is known to have and do unexpectedly establish the presence of a non-neuronal cholinergic system in the Achilles tendon.  相似文献   

3.
Results of recent studies using immunohistochemistry show evidence of an occurrence of catecholamine production in the cells (tenocytes) of patellar tendons exhibiting tendinopathy (tendinosis). In the present study, antibodies against the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) and alpha1-adrenoreceptors were applied to sections of specimens of normal and tendinosis Achilles tendons. In situ hybridization using a probe detecting human TH mRNA was also utilized. It was found that sympathetic innervation was very scarce. On the other hand, there were distinct alpha1-adrenoreceptor immunoreactions in blood vessel walls. Interestingly, tenocytes, particularly from tendinosis samples in which the tenocytes showed an abnormal shape (not the typical slender appearance), displayed TH immunoreactions and reactions for TH mRNA. Of further interest was the finding of alpha1-adrenoreceptor immunoreactions in tenocytes. The observations show not only evidence of local catecholamine production at the protein level, which was the case in recent studies for the patellar tendon, but also at the mRNA level. The observations suggest that the tenocytes, especially those with disfigured appearances in tendinosis, can produce catecholamines and also that they can respond to sympathetic transmitters. This is of interest as adrenergic stimulation in other parts of the body is known to induce degenerative/apoptotic and proliferative events, features which are seen in Achilles tendinosis. These observations are completely new findings concerning the human Achilles tendon. It is likely that locally produced catecholamines and the occurrence of autocrine/paracrine effects of these substances are of great relevance during the process of tendinosis.  相似文献   

4.
We have recently obtained evidence favoring the occurrence of an up-regulation of a non-neuronal cholinergic system in chronic painful patellar tendon tendinosis. It seems possible that this up-regulation to a certain degree may be involved in the manifestations of the disease. Today, there is a new, very successful, line of treatment of patellar tendinosis in the form of Doppler guided sclerosing injections. However, a few patients seem resistant to this therapy. Therefore, we have in this pilot study investigated biopsies from the patellar tendon of three such therapy-resistant patients, using immunohistochemistry. In situ hybridization was also applied. Comparisons were made with a material of specimens from both normal (n=16) and tendinosis (n=7) tendons, also previously examined. The study showed that there were extensive immunoreactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter, as well as for the M(2) muscarinic acetylcholine receptor, in the overwhelming majority of the tenocytes. The immunoreactions were more pronounced than those generally obtained in the tendinosis tissue of the previously studied patients and clearly more pronounced than those of patellar tendon tissue of controls. Also, for the first time, we here present findings of mRNA for ChAT within tenocytes. In conclusion, it appears as if there is an excessive local acetylcholine (ACh) production and an occurrence of marked ACh effects in cases of severe tendinosis. An excessive production of local ACh might be related to pain sensation and the processes that occur in tendinosis development, such as cell proliferation. Thus, the results of this pilot study suggest that non-neuronal ACh is highly involved in the pathology of therapy-resistant patellar tendinosis.  相似文献   

5.
Brain derived neurotrophic factor (BDNF) is a multipotent neurotrophin known for its growth-influencing and apoptosis-modulating functions, as well as for its function to interact with neurotransmitters/neuromodulators. BDNF is reported to be mainly produced in the brain. BDNF can be absorbed into peripheral tissue from the blood stream. Expression of this neurotrophin at the protein level, as well as of the neurotrophin receptor p75, has been previously shown for the principal cells (tenocytes) of the Achilles tendon. However, there is no proof at the mRNA level that BDNF is produced by the tenocytes. As the Achilles tendon tenocytes show "neuronal-like" characteristics, in the form of expressions favouring synthesis of several neuromodulators/neurotransmitters, and as BDNF especially is produced in neurons, it is of interest to confirm this. In the present study, therefore, in situ hybridization for demonstration of BDNF mRNA was performed on biopsies from Achilles tendons of patients with tendinosis and pain-free non-tendinosis individuals. The results showed that the tenocytes of both groups exhibited BDNF mRNA reactions. These observations indeed favour the idea that BDNF is produced by tenocytes in the human Achilles tendon, why Achilles tendon tissue is a tissue in which BDNF can be locally produced. BDNF can have modulatory functions for the tenocytes, including apoptosis-modifying effects via actions on the p75 receptor and interactive effects with neurotransmitters/neuromodulators produced in these cells. This possibility should be further studied for Achilles tendon tissue.  相似文献   

6.
It is not known as to whether the Achilles and patellar tendons contain neurokinin-1 (NK-1) receptors. This is a drawback when considering the fact that pain symptoms are frequent in these and as recent studies show that the pain symptoms might be cured via interference with blood vessel function. In the present study, the human Achilles and patellar tendons were examined concerning immunohistochemical expression of the NK-1 receptor. Chemically unfixed and fixed specimens, TRITC and PAP stainings and a battery of NK-1 receptor antibodies, including antibodies against the C-terminus and the N-terminal region, were utilized. NK-1 receptor immunoreaction could be detected in inner parts of the walls of large blood vessels and in the walls of small blood vessels. To some extent, NK-1 immunoreaction was also detectable in small nerve fascicles and in tenocytes. It was found to be of utmost importance to apply both chemically unfixed and fixed specimens. The use of chemically unfixed tissue was found advantageous in order to depict the immunoreactions in the blood vessel walls. The observations represent new findings and are of relevance as substance P (SP) is known to be of importance where neurogenic angiogenesis contributes to diseases and as SP on the whole has profound effects concerning blood vessel regulation.  相似文献   

7.
Flexor tendon wound healing in zone II is complicated by adhesions to the surrounding fibro-osseous sheath. These adhesions can significantly alter tendon gliding and ultimately hand function. Lactate and transforming growth factor-beta (TGF-beta) are two important mediators of wound healing that have been demonstrated to independently increase collagen production by cells of the tendon sheath, epitenon, and endotenon. This study examined the effects of lactate on TGF-beta peptide and receptor production by flexor tendon cells. Tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes were isolated from rabbit flexor tendons and cultured separately. Cell cultures were supplemented with 50 mM lactate, and the expression of three TGF-beta peptide isoforms (beta1, beta2, and beta3) and three receptor isoforms (R1, R2, and R3) was quantified with enzyme-linked immunosorbent assays. TGF-beta functional activity was also assessed with the addition of tendon cell conditioned media to mink lung epithelial cells transfected with a luciferase reporter gene expression construct responsive to TGF-beta. Supplementation of the cell culture medium with lactate significantly (p < 0.05) increased the expression of all TGF-beta peptide and receptor isoforms in all three cell lines. Tendon sheath fibroblasts exhibited the greatest increases in beta1 and beta2 peptide isoform expression (30 and 23 percent, respectively), whereas endotenon tenocytes demonstrated the greatest increase in beta3 peptide expression (32 percent). Epitenon tenocytes exhibited the greatest increases in receptor isoform R1 and R2 expression (17 and 19 percent, respectively). All three tendon cell types demonstrated significant (p < 0.05) increases in TGF-beta functional activity when exposed to lactate. Epitenon tenocytes demonstrated the greatest increase in activity (>4 times control values), whereas tendon sheath fibroblasts demonstrated the highest overall levels of total TGF-beta functional activity. Lactate significantly increased TGF-beta peptide (beta1, beta2, and beta3) expression, receptor (R1, R2, and R3) expression, and functional activity, suggesting a common pathway regulating tendon cell collagen production. Modulation of lactate and TGF-beta levels may provide a means of modulating the effects of TGF-beta on adhesion formation in flexor tendon wound healing.  相似文献   

8.
Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.  相似文献   

9.
Lu P  Zhang GR  Song XH  Zou XH  Wang LL  Ouyang HW 《PloS one》2011,6(6):e21154
The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases.  相似文献   

10.
11.

Background

The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis.

Methodology

Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons.

Principal Findings

CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue.

Conclusion

Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.  相似文献   

12.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.  相似文献   

13.
Age‐related tendon degeneration (tendinosis) is characterized by a phenotypic change in which tenocytes display characteristics of fibrochondrocytes and mineralized fibrochondrocytes. As tendon degeneration has been noted in vivo in areas of decreased tendon vascularity, we hypothesized that hypoxia is responsible for the development of the tendinosis phenotype, and that these effects are more pronounced in aged tenocytes. Hypoxic (1% O2) culture of aged, tendinotic, and young human tenocytes resulted in a mineralized fibrochondrocyte phenotype in aged tenocytes, and a fibrochondrocyte phenotype in young and tendinotic tenocytes. Investigation of the molecular mechanism responsible for this phenotype change revealed that the fibrochondrocyte phenotype in aged tenocytes occurs with decreased Rac1 activity in response to hypoxia. In young hypoxic tenocytes, however, the fibrochondrocyte phenotype occurs with concomitant decreased Rac1 activity coupled with increased RhoA activity. Using pharmacologic and adenoviral manipulation, we confirmed that these hypoxic effects on the tenocyte phenotype are linked directly to the activity of RhoA/Rac1 GTPase in in vitro human cell culture and tendon explants. These results demonstrate that hypoxia drives tenocyte phenotypic changes, and provide a molecular insight into the development of human tendinosis that occurs with aging.  相似文献   

14.
The role of substance P in inflammatory disease   总被引:26,自引:0,他引:26  
The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease.  相似文献   

15.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   

16.
Substance P (SP) and its receptor, the neurokinin‐1 receptor (NK‐1 R), are expressed by human tenocytes, and they are both up‐regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti‐apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti‐Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti‐Fas‐induced apoptosis, and by which mechanisms SP mediates an anti‐apoptotic response. Anti‐Fas treatment resulted in a time‐ and dose‐dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose‐dependently reduced the Anti‐Fas‐induced cell death through a NK‐1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti‐Fas‐induced apoptosis via NK‐1 R. In addition, it was shown that SP reduces Anti‐Fas‐induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti‐Fas induces cleavage/activation of caspase‐3 and cleavage of PARP; both of which were inhibited by SP via NK‐1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti‐apoptotic effect of SP was, at least partly, induced through the Akt‐dependent pathway. In conclusion, we show that SP reduces Anti‐Fas‐induced apoptosis in human tenocytes and that this anti‐apoptotic effect of SP is mediated through NK‐1 R and Akt‐specific pathways.  相似文献   

17.
In bile duct-ligated (BDL) rats, cholangiocyte proliferation is regulated by neuroendocrine factors such as α-calcitonin gene-related peptide (α-CGRP). There is no evidence that the sensory neuropeptide substance P (SP) regulates cholangiocyte hyperplasia. Wild-type (WT, (+/+)) and NK-1 receptor (NK-1R) knockout (NK-1R(-/-)) mice underwent sham or BDL for 1 wk. Then we evaluated 1) NK-1R expression, transaminases, and bilirubin serum levels; 2) necrosis, hepatocyte apoptosis and steatosis, and the number of cholangiocytes positive by CK-19 and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling in liver sections; 3) mRNA expression for collagen 1α and α-smooth muscle (α-SMA) actin in total liver samples; and 4) PCNA expression and PKA phosphorylation in cholangiocytes. In cholangiocyte lines, we determined the effects of SP on cAMP and D-myo-inositol 1,4,5-trisphosphate levels, proliferation, and PKA phosphorylation. Cholangiocytes express NK-1R with expression being upregulated following BDL. In normal NK-1R(-/-) mice, there was higher hepatocyte apoptosis and scattered hepatocyte steatosis compared with controls. In NK-1R (-)/(-) BDL mice, there was a decrease in serum transaminases and bilirubin levels and the number of CK-19-positive cholangiocytes and enhanced biliary apoptosis compared with controls. In total liver samples, the expression of collagen 1α and α-SMA increased in BDL compared with normal mice and decreased in BDL NK-1R(-/-) compared with BDL mice. In cholangiocytes from BDL NK-1R (-)/(-) mice there was decreased PCNA expression and PKA phosphorylation. In vitro, SP increased cAMP levels, proliferation, and PKA phosphorylation of cholangiocytes. Targeting of NK-1R may be important in the inhibition of biliary hyperplasia in cholangiopathies.  相似文献   

18.
19.
A rat kidney epithelial cell line expressing the rat neurokinin-1 receptor (NK-1 R) was used to investigate the relationship between receptor phosphorylation and desensitization. Substance P (SP) maximally stimulated cellular inositol 1,4,5-trisphosphate (IP3) production 14-fold within 3 s, after which cellular IP3 levels rapidly diminished to near basal levels in the continuing presence of SP. SP also caused concentration-dependent phosphorylation of the NK-1R, and this effect was blocked by a receptor antagonist. Stimulation with 100 nM SP for as little as 2 s resulted in 90% desensitization of the receptor to restimulation by SP, and near-maximal receptor phosphorylation was observed at 5 s. Receptor desensitization was not affected by agents that affect protein kinase A. Phorbol 12-myristate 13-acetate (PMA) also caused phosphorylation and desensitization of the receptor but with slower kinetics and to a lesser extent than SP. PMA- but not SP-induced NK-1 R desensitization and phosphorylation were abolished by the protein kinase C inhibitor bisindolylmaleimide 1. The concentration-response curves for SP-stimulated IP3 signaling and desensitization were similar, but the curve for NK-1R phosphorylation was shifted to the right and was steeper, suggesting that the relationship between desensitization and phosphorylation is complex. These results show that both rapid homologous and rapid heterologous NK-1R desensitizations may be mediated by receptor phosphorylation but occur via distinct mechanisms with different kinetics and efficacies.  相似文献   

20.
Macrophages (Mφ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mφ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3-6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mφ sub-populations were quantified based on surface antigen expression of CD172a (pan Mφ), CD14(high)CD206(low) (pro-inflammatory M1Mφ), and CD206(high) (anti-inflammatory M2Mφ) to assess potential polarised phenotypes. In addition, the Lipoxin A(4) receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mφ and FPR2/ALX. In contrast, M1Mφ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mφ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mφ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A(4) (LXA(4)) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E(2). Stimulation with either mediator induced LXA(4) release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mφ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号