首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosed Shiga toxin is transported from the Golgi complex to the endoplasmic reticulum in butyric acid-treated A431 cells. We here examine the extent of this retrograde transport and its regulation. The short B fragment of Shiga toxin is sufficient for transport to the ER. The B fragment of cholera toxin, which also binds to glycolipids, is transported to all the Golgi cisterns, but cannot be localized in the ER even after butyric acid treatment. Under all conditions the toxic protein ricin was found predominantly in the trans-Golgi network. There is no transport of endocytosed fluid to the Golgi apparatus or to the ER even after butyric acid treatment and in the presence of Shiga toxin, indicating that transport to the ER, through the trans-Golgi network and the cisterns of the Golgi apparatus, involves several sorting stations. Since Shiga toxin receptors (Gb3) in butyric acid- treated A431 cells seem to have a ceramide moiety with longer fatty acids than in untreated cells, the possibility exists that fatty acid composition of the receptor is important for sorting to the ER. Both retrograde transport and intoxication with Shiga toxin can also be induced by cAMP, supporting the idea that retrograde transport from the Golgi to the ER is required for intoxication. The data suggest that transport to the ER in cells in situ may depend on fatty acid composition and is regulated by physiological signals.  相似文献   

2.
Shiga-toxin–producing Escherichia coli remain a food-borne health threat. Shiga toxin is endocytosed by intestinal epithelial cells and transported retrogradely through the secretory pathway. It is ultimately translocated to the cytosol where it inhibits protein translation. We found that Shiga toxin transport through the secretory pathway was dependent on the cytoskeleton. Recent studies reveal that Shiga toxin activates signaling pathways that affect microtubule reassembly and dynein-dependent motility. We propose that Shiga toxin alters cytoskeletal dynamics in a way that facilitates its transport through the secretory pathway. We have now found that Rho GTPases regulate the endocytosis and retrograde motility of Shiga toxin. The expression of RhoA mutants inhibited endocytosis of Shiga toxin. Constitutively active Cdc42 or knockdown of the Cdc42-specific GAP, ARHGAP21, inhibited the transport of Shiga toxin to the juxtanuclear Golgi apparatus. The ability of Shiga toxin to stimulate microtubule-based transferrin transport also required Cdc42 and ARHGAP21 function. Shiga toxin addition greatly decreases the levels of active Cdc42-GTP in an ARHGAP21-dependent manner. We conclude that ARHGAP21 and Cdc42-based signaling regulates the dynein-dependent retrograde transport of Shiga toxin to the Golgi apparatus.  相似文献   

3.
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.  相似文献   

4.
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.  相似文献   

5.
Sorting nexin 8 (SNX8) belongs to the sorting nexin protein family, whose members are involved in endocytosis and endosomal sorting and signaling. The function of SNX8 has so far been unknown. Here, we have investigated the role of SNX8 in intracellular transport of the bacterial toxin Shiga toxin (Stx) and the plant toxin ricin. After being endocytosed, these toxins are transported retrogradely from endosomes, via the Golgi apparatus and the endoplasmic reticulum (ER), into the cytosol, where they exert their toxic effect. Interestingly, our experiments show that SNX8 regulates the transport of Stx and ricin differently; siRNA-mediated knockdown of SNX8 significantly increased the Stx transport to the trans-Golgi network (TGN), whereas ricin transport was slightly inhibited. We also found that SNX8 colocalizes with early endosome antigen 1 (EEA1) and with retromer components, suggesting an endosomal localization of SNX8 and supporting our finding that SNX8 is involved in endosomal sorting.  相似文献   

6.
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.  相似文献   

7.
Whereas brefeldin A (BFA) protected a number of cell lines against the protein toxin ricin, two of the cell lines tested were not protected but rather sensitized to ricin by BFA. EM studies revealed that upon addition of BFA the Golgi stacks in cells which were protected against the toxin rapidly transformed into a characteristic tubulo-vesicular reticulum connected to the endoplasmic reticulum, and subcellular fractionation experiments showed that galactosyl transferase disappeared from the Golgi fractions where it was normally located. EM and subcellular fractionation also indicated that in contrast to the Golgi stacks, the trans-Golgi network (TGN) remained intact and that internalized ricin was still localized in the TGN both when BFA was added before and after the toxin. Thus, BFA does not prevent fusion of ricin-containing vesicles with the TGN, and unlike resident proteins in Golgi stacks, ricin is not transported back to ER upon treatment of cells with BFA. Two kidney epithelial cell lines, MDCK and PtK2, were not protected against ricin by BFA, and EM studies of MDCK cells revealed that BFA did not alter the morphology of the Golgi complex in these cells. Also, subcellular fractionation revealed that, in contrast to the other cell types tested, the localization of galactosyl transferase in the gradients was not affected by BFA treatment. The data show that there is a correlation between BFA-induced disassembly of the Golgi stacks and protection against ricin, and they demonstrate that the structural organization of the Golgi apparatus is affected by BFA to different extents in various cell lines.  相似文献   

8.
Shiga toxin inhibits protein synthesis after being transported from the cell surface to endosomes and retrogradely through the Golgi apparatus to the endoplasmic reticulum (ER) and into the cytosol. In this study, we have abolished proton gradients across internal membranes in different ways and investigated the effect on the various transport steps of Shiga toxin. Although inhibitors of the proton pump such as bafilomycin A1 and concanamycin A as well as some ionophores and chloroquine all protect against Shiga toxin, they mediate protection by inhibiting different transport steps. For instance, chloroquine protects the cells, although the toxin is transported to the ER. Importantly, our data indicate that proton pump activity is required for efficient endosome-to-Golgi transport of Shiga toxin, although acidification as such does not seem to be required.  相似文献   

9.
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2)), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2) activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2).  相似文献   

10.
In HeLa cells, Shiga toxin B-subunit is transported from the plasma membrane to the endoplasmic reticulum, via early endosomes and the Golgi apparatus, circumventing the late endocytic pathway. We describe here that in cells derived from human monocytes, i.e., macrophages and dendritic cells, the B-subunit was internalized in a receptor-dependent manner, but retrograde transport to the biosynthetic/secretory pathway did not occur and part of the internalized protein was degraded in lysosomes. These differences correlated with the observation that the B-subunit associated with Triton X-100-resistant membranes in HeLa cells, but not in monocyte-derived cells, suggesting that retrograde targeting to the biosynthetic/secretory pathway required association with specialized microdomains of biological membranes. In agreement with this hypothesis we found that in HeLa cells, the B-subunit resisted extraction by Triton X-100 until its arrival in the target compartments of the retrograde pathway, i.e., the Golgi apparatus and the endoplasmic reticulum. Furthermore, destabilization of Triton X-100-resistant membranes by cholesterol extraction potently inhibited B-subunit transport from early endosomes to the trans-Golgi network, whereas under the same conditions, recycling of transferrin was not affected. Our data thus provide first evidence for a role of lipid asymmetry in membrane sorting at the interface between early endosomes and the trans-Golgi network.  相似文献   

11.
The human epidermoid carcinoma cell line A431 becomes highly sensitive to Shiga toxin upon treatment with butyric acid. This strong sensitization (> 1000-fold) is accompanied by an increase in the fraction of cell-associated toxin transported to the Golgi apparatus and to the endoplasmic reticulum (ER). Furthermore, our previous work showed that the length of the fatty acyl chain of Gb3, the Shiga toxin receptor, also was changed (longer fatty acids). We have not investigated the importance of this change by testing whether glycolipid synthesis is required for the changed intracellular sorting and the toxin sensitivity. We demonstrate here that inhibition of glycosphingolipid synthesis by inhibition of N-acyltransferase with fumonisin B1, by inhibition of glucosylceramide synthetase by PDMP or PPMP, or by inhibition of serine palmitoyl transferase by beta-fluoroalanine, inhibited the butyric acid-induced change in sensitivity and the increase in the fraction of cell-associated Shiga toxin transported to the Golgi apparatus and the ER. The block in butyric acid-induced sensitization caused by beta-fluoroalanine could be abolished by simultaneous addition of sphinganine or sphingosine. Thus, the data suggest that the fatty acyl chain length of glycosphingolipids is important for intracellular sorting and translocation of Shiga toxin to the cytosol.  相似文献   

12.
We deleted the cytoplasmic domain of the polymeric immunoglobulin receptor. When expressed in fibroblasts, the truncated receptor, like the wild-type, reaches the cell surface, can bind ligand, and is cleaved to secretory component. Unlike the wild-type, it is not endocytosed. When expressed in polarized Madin-Darby canine kidney cells, the mutant receptor is transported from the Golgi apparatus directly to the apical surface and cleaved to secretory component. In contrast, the wild-type receptor travels from the Golgi to the basolateral surface and is then endocytosed and sent to the apical surface. These results suggest that the cytoplasmic domain of the receptor is necessary for both basolateral localization and endocytosis.  相似文献   

13.
The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus.  相似文献   

14.
Evidence is presented that endocytosis is involved in the transport to the cytosol of the cytotoxin from Shigella dysenteriae 1, Shiga toxin, which acts by removal of a single adenine residue in 28-S ribosomal RNA. Inhibition of endocytosis by ATP depletion of the cells prevented toxin uptake. Exposure of HeLa S3 and Vero cells to toxin at low extracellular pH, where translocation to the cytosol, but not endocytosis is inhibited, allowed the toxin to accumulate in a compartment where it was protected against antibodies to the toxin. Upon transfer of the cells to normal medium endocytosed toxin entered the cytosol. Electron microscopical studies of cells exposed at 0 degrees C to a toxin-horseradish peroxidase (HRP) conjugate, or to unconjugated toxin followed by horse antitoxin antibodies and then protein G-gold, revealed that the Shiga toxin binding sites were randomly distributed on the cell surface, without any preference to, for example, coated pits. In contrast, when cells were exposed to toxin at 37 degrees C, the binding sites were preferentially localized in coated pits. The Shiga-HRP conjugate was also seen in endosomes, lysosomes, and in the Golgi region. Endocytosis by the coated pit/coated vesicle pathway was selectively inhibited by acidification of the cytosol. Under these conditions, both the uptake of toxin-HRP conjugates and intoxication of the cells were inhibited. Evidence from the literature as well as our own results suggest that Shiga toxin binding sites are glycolipids. Thus, Shiga toxin appears to be the first example of a lipid-binding ligand that is endocytosed from coated pits.  相似文献   

15.
Sandvig K  van Deurs B 《The EMBO journal》2000,19(22):5943-5950
A large number of plant and bacterial toxins with enzymatic activity on intracellular targets are now known. These toxins enter cells by first binding to cell surface receptors, then they are endocytosed and finally they become translocated into the cytosol from an intracellular compartment. In the case of the plant toxin ricin and the bacterial toxin Shiga toxin, this happens after retrograde transport through the Golgi apparatus and to the endoplasmic reticulum. The toxins are powerful tools to reveal new pathways in intracellular transport. Furthermore, knowledge about their action on cells can be used to combat infectious diseases where such toxins are involved, and a whole new field of research takes advantage of their ability to enter the cytosol for therapeutic purposes in connection with a variety of diseases. This review deals with the mechanisms of entry of ricin and Shiga toxin, and the attempts to use such toxins in medicine are discussed.  相似文献   

16.
The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting.  相似文献   

17.
Abstract: Various glycolipid-binding toxins are internalized from the cell surface to the Golgi apparatus. Prominent among these is cholera toxin (CT), which consists of a pentameric B subunit that binds to ganglioside GM1 and an A subunit that mediates toxicity. We now demonstrate that rhodamine (Rh)-CT can be further internalized from the Golgi apparatus to the endoplasmic reticulum (ER) in cultured hippocampal neurons and in neuroblastoma N18TG-2 cells and that the A subunit is essential for retrograde transport to the ER. In addition, the rate of internalization of Rh-CT to the Golgi apparatus and ER decreases dramatically as hippocampal neurons mature. The Golgi apparatus was labeled in almost all 1-day-old neurons after <1 h of incubation with Rh-CT but was labeled in <10% of 14-day-old neurons after 1 h. During the first 14 days in culture, there was a 15-fold increase in the number of 125I-CT-binding sites per cell, indicating that the decrease in the rate of internalization of Rh-CT is not due to reduced levels of cell surface GM1 in older neurons. These results imply that the rate of retrograde transport of CT from the plasma membrane to the Golgi apparatus and ER is regulated during neuronal development and differentiation.  相似文献   

18.
The effect of calmodulin antagonists on endocytosis, transcytosis, recycling, and transport to the Golgi apparatus from both the apical and the basolateral plasma membrane of polarized Madin–Darby canine kidney cells has been investigated by using the plant toxin ricin as a membrane marker. The calmodulin antagonists trifluoperazine andN-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) stimulated apical endocytosis of ricin, whereas basolateral endocytosis was unaffected. A stimulation of the apical uptake of the fluid-phase marker horseradish peroxidase by calmodulin antagonists was also found both by biochemical and by ultrastructural studies. Furthermore, W-7 reduced the recycling of ricin to the apical plasma membrane, whereas the recycling to the basolateral plasma membrane was not changed. Transport of ricin to the Golgi apparatus was also selectively affected by the calmodulin antagonist W-7. After basolateral endocytosis of ricin, transport to the Golgi apparatus was reduced, whereas after apical endocytosis the fraction of endocytosed ricin transport to the Golgi apparatus was increased. Transcytosis of ricin from the basolateral to the apical pole was increased in the presence of calmodulin antagonists, whereas these compounds did not have any significant effect on the apical to basolateral transcytosis. Thus, the results obtained indicate that calmodulin is involved in regulation of apical endocytosis and recycling as well as in transcytosis of ricin from the basolateral plasma membrane. Furthermore, the data suggest that calmodulin plays a role in regulation of ricin transport to the Golgi apparatus.  相似文献   

19.
The plant toxin ricin is transported to the Golgi and the endoplasmic reticulum before translocation to the cytosol where it inhibits protein synthesis. The toxin can therefore be used to investigate pathways leading to the Golgi apparatus. Except for the Rab9-mediated transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network (TGN), transport routes between endosomes and the Golgi apparatus are still poorly characterized. To investigate endosome to Golgi transport, we have used here a modified ricin molecule containing a tyrosine sulfation site and quantified incorporation of radioactive sulfate, a TGN modification. A tetracycline-inducible mutant Rab9S21N HeLa cell line was constructed and characterized to study whether Rab9 was involved in transport of ricin to the TGN and, if not, to further investigate the route used by ricin. Induced expression of Rab9S21N inhibited Golgi transport of mannose 6-phosphate receptors but did not affect the sulfation of ricin, suggesting that ricin is transported to the TGN via a Rab9-independent pathway. Moreover, because Rab11 is present in the endosomal recycling compartment and the TGN, studies of transient transfections with mutant Rab11 were performed. The results indicated that routing of ricin from endosomes to the TGN occurs by a Rab11-independent pathway. Finally, because clathrin has been implicated in early endosome to TGN transport, ricin transport was investigated in cells with inducible expression of antisense to clathrin heavy chain. Importantly, endosome to TGN transport (sulfation of endocytosed ricin) was unchanged when clathrin function was abolished. In conclusion, ricin is transported from endosomes to the Golgi apparatus by a Rab9-, Rab11-, and clathrin-independent pathway.  相似文献   

20.
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A-C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号