首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Schultes 《Acta anatomica》1991,140(1):85-96
The dorsal funiculus in cervical spinal cords of rats from birth to 120 days postnatally has been studied on order to document the axon growth. Within the dorsal funiculus the cuneate and gracile fasciculi have been examined and within the gracile fasciculus the distinct cervical, thoracal and lumbar areas. Light microscopy and morphometry on the day of birth and 15, 20 and 120 days postnatally show an axon growth stagnation between the 15th and 20th day of maturation. The stagnation phase seems to induce the myelinization. A comparison between Goll's and Burdach's tracts shows an earlier and faster growth of the axons in Burdach's tract. Consequently, the epicritical sensibility of the upper extremity is developed earlier. It has been found out that within Goll's tract a caudocranial maturation takes place. The lumbar area of the fasciculus gracilis is matured earlier than the thoracal and the cervical ones.  相似文献   

2.
The data on pyramidal neurons joining in the parietal and temporal areas of the dolphin neocortex by means of apical dendrites fasciculi are presented. The fasciculi also contain dendrites of spindle-like and stellate cells. The vertical fasciculi of the dendrites unite neurons of the layer V and of the sublayer III2. In the sublayer III1, after dichotonic division of the apical dendrites, fasciculi of the second order are formed, to them the dendrites of the pyramidal neurons of the sublayer III1 and the layer II join. Several forms of the interneuronal contacts have been revealed: axo-dendritic, axo-spinous and dendro-dendritic. Synaptic complexes of the converged and divergent types have been shown. A suggestion is made on formation of larger neuronal modules++, having common afferent entrance and demonstrating selectivity to the stimulus properties.  相似文献   

3.
The fine structure of nerve plexus in the rabbit abdominal aorta, ear and coronary arteries has been studied. Four types of the nerve fibre organization corresponding to different levels of sectioning their preterminal and terminal zones have been determined. Axons form large bundles which lose Schwann sheathes and divide into smaller and even single axons as they approach the distal end. Single axons make up contacts with effector cells without forming special synaptic structures. The smalles distance found between axon membranes and smooth muscle cells is 20 nm and 50 nm for the ear and coronary arteries, respectively. In the abdominal aorta, axons lie at a distance of several microns from the muscle sheath. Such arrangement supports the hypothesis of a "distant" nervous influence on the smooth muscle and indicates that the space of nervous influence comprises the tissue surrounding the blood vessel  相似文献   

4.
By means of histochemical method, for revealing cholinergic nervous structures, and electron microscopy, innervation of biologically active points (BAP) and that of neutral areas of the rabbit ear skin has been studied, normal and after acu-, electro- and electroacupuncture. The BAP have more intensive vascularization and innervation, their specific feature is presence of well pronounced nervous fasciculi. The latter are formed by 6-10 fibers 1-6 mcm in diameter. The diameter of the fasciculi is within the limits 25-30 mcm up to 40-45 mcm. Under the electron microscopic investigation myelin and amyelin fibers are revealed in the nervous fasciculi. In the area of the epidermal basal layer and in the epidermis itself, single nerve terminals are found; they are considered as the point pain receptors. After acu-, electro- and electroacupuncture, intensity of the nervous fibers staining increases, thus demonstrating an increment of acetylcholine esterase activity. After insertion of acupuncture needles and after electrical irritation, the changes in the nervous and cellular elements in the BAP areas are studied electron microscopically. After the effects mentioned, mast cells situating in the BAP area become, as a rule, degranulated. After repeated electroacupuncture irritation of the BAP, an inflammatory focus appears with peculiarities specific for the given process. The reflexotherapeutic effect is supposed to be transferred via the nervous system. The mechanical irritation of the nerve fasciculi and the accompanying traumatization of the surrounding cellular elements initiate the mechanism of reflexotherapy.  相似文献   

5.
Summary Back-labeling of regenerated electromotor neurons in the teleost Sternarchus albifrons was performed to test the hypothesis that, in regenerated spinal cord, incorrectly located electromotor neurons are eliminated because their axons do not reach the correct target area (electric organ). In each cross section examined, all of the regenerated electromotor neurons ipsilateral to the implantation site were labeled with horseradish peroxidase, including those ectopic cells located at the edge of the cord, which are later eliminated by selective cell death. Retrograde labeling of these ectopic neurons demonstrates that their axons do extend into the correct target area (the regenerated electric organ). Thus total misdirection of the axons cannot be the cause of their subsequent cell death. We conclude that selective neuronal death in this system does not reflect the absence of axonal projection to the correct target area.A preliminary report on this work has been presented in Soc. Neurosci. Abstracts 10:48 (1984)  相似文献   

6.
Summary The arcuate nucleus, median eminence, and the lateral preoptic area from the brains of aldehyde-perfused male and female rats were examined by electron microscopy. In the lateral preoptic area, three neuronal types are described: a small light neuron, a larger light one, and a dark neuron resembling the larger light one in size and nuclear shape. Many myelinated axons are interposed among single neurons or neuronal pairs. The relationship of structures to each other is discussed. Several observations not previously reported are illustrated from tissue of the arcuate nucleus and median eminence.  相似文献   

7.
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke’s and Broca’s areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.

Using data from Human Connectome Project to estimate the absolute number of axons linking cortical areas yields surprisingly sparse connectivity; reconciling large-scale functional synchronization with sparse anatomical connectivity presents a challenge for our present understanding of human brain organization.  相似文献   

8.
Although neuronal functions depend on their robust polarity, the mechanisms that ensure generation and maintenance of only a single axon remain poorly understood. Using highly sensitive two-dimensional electrophoresis-based proteomics, we identified here a novel protein, single axon-related (singar)1/KIAA0871/RPIPx/RUFY3, which contains a RUN domain and is predominantly expressed in the brain. Singar1 expression became up-regulated during polarization of cultured hippocampal neurons and remained at high levels thereafter. Singar1 was diffusely localized in hippocampal neurons and moderately accumulated in growth cones of minor processes and axons. Overexpression of singar1 did not affect normal neuronal polarization but suppressed the formation of surplus axons induced by excess levels of shootin1, a recently identified protein located upstream of phosphoinositide-3-kinase and involved in neuronal polarization. Conversely, reduction of the expression of singar1 and its splicing variant singar2 by RNA interference led to an increase in the population of neurons bearing surplus axons, in a phosphoinositide-3-kinase-dependent manner. Overexpression of singar2 did not suppress the formation of surplus axons induced by shootin1. We propose that singar1 ensures the robustness of neuronal polarity by suppressing formation of surplus axons.  相似文献   

9.
The numerous connections between neuronal cell bodies, made by their dendrites and axons, are vital for information processing in the brain. While dendrites and synapses have been extensively studied, axons have remained elusive to a large extent. We present a novel platform to study axonal physiology and information processing based on combining an 11,011-electrode high-density complementary metal-oxide semiconductor microelectrode array with a poly(dimethylsiloxane) channel device, which isolates axons from somas and, importantly, significantly amplifies recorded axonal signals. The combination of the microelectrode array with recording and stimulation capability with the microfluidic isolation channels permitted us to study axonal signal behavior at great detail. The device, featuring two culture chambers with over 30 channels spanning in between, enabled long-term recording of single spikes from isolated axons with signal amplitudes of 100 μV up to 2 mV. Propagating signals along axons could be recorded with 10 to 50 electrodes per channel. We (i) describe the performance and capabilities of our device for axonal electrophysiology, and (ii) present novel data on axonal signals facilitated by the device. Spontaneous action potentials with characteristic shapes propagated from somas along axons between the two compartments, and these unique shapes could be used to identify individual axons within channels that contained many axonal branches. Stimulation through the electrode array facilitated the identification of somas and their respective axons, enabling interfacing with different compartments of a single cell. Complex spike shapes observed in channels were traced back to single cells, and we show that more complicated spike shapes originate from a linear superposition of multiple axonal signals rather than signal distortion by the channels.  相似文献   

10.
In the past year, evidence indicating that some developing axons are guided to their targets, at least in part, by gradients of diffusible chemoattractants secreted by their target cells has continued to accumulate. It has also been shown for the first time that axons can orient in response to smooth gradients of immobilized substrate molecules.  相似文献   

11.
1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1–S3) and lumbar (L1–L7) segments of the dog. 2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments. 3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI–CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0–9.2 μm in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe–Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen. 4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.  相似文献   

12.
We have addressed the control of longitudinal axon pathfinding in the developing hindbrain, including the caudal projections of reticular and raphe neurons. To test potential sources of guidance signals, we assessed axon outgrowth from embryonic rat hindbrain explants cultured in collagen gels at a distance from explants of midbrain-hindbrain boundary (isthmus), caudal hindbrain, or cervical spinal cord. Our results showed that the isthmus inhibited caudally directed axon outgrowth by 80% relative to controls, whereas rostrally directed axon outgrowth was unaffected. Moreover, caudal hindbrain or cervical spinal cord explants did not inhibit caudal axons. Immunohistochemistry for reticular and raphe neuronal markers indicated that the caudal, but not the rostral projections of these neuronal subpopulations were inhibited by isthmic explants. Companion studies in chick embryos showed that, when the hindbrain was surgically separated from the isthmus, caudal reticulospinal axon projections failed to form and that descending pioneer axons of the medial longitudinal fasciculus (MLF) play an important role in the caudal reticulospinal projection. Taken together, these results suggest that diffusible chemorepellent or nonpermissive signals from the isthmus and substrate-anchored signals on the pioneer MLF axons are involved in the caudal direction of reticulospinal projections and might influence other longitudinal axon projections in the brainstem.  相似文献   

13.
Myelogenesis and blood supply of the intraorganic nerves have been studied in 4-6- and 7-9-month-old human fetuses. At first, the intramuscular nerves are presented as very thick fasciculi (the diameter is more than 90), thick (the diameter is from 50 up to 90) and single muddle neural fasciculi (the diameter is from 30 up to 50 mcm). The microcirculatory blood bed is formed at the expense of branches of the blood vessel-satellites and the blood vessels of the surrounding tissues and is carried out, without any interruption, along the whole extent. In 7-9-month-old fetuses the neural apparatus becomes more complex. The number of the middle neural fasciculi appear. On the background of fine neural fibers in the fasciculi a small part of the middle neural fibers appears, and in the musculus flexor digitorum brevis--single thick neural fibers. The intramuscular nerves have their own hemocirculatory bed presented by microvessels that are on the perineurium surface, in its bulck and among neural fibers.  相似文献   

14.
By means of classical anatomical techniques: injection of contrast masses into the vascular network, macro-microscopic preparation, translucency, roentgenography, and some histological techniques, peculiarities of the hemomicrocirculatory bed in muscles of the human arm and forearm have been revealed. Small arteries of the 3d-4th order run along the muscle fiber fasciculi. In the center of the 2d order muscle fasciculus, in its internal perimysium, arteriole and venule (or 2 venules) run; from them into the 1st order fasciculus, precapillary arterioles and postcapillary venules, connected by means of capillaries, run. The arteriole and the venule, accompanying it, together with the precapillary arterioles and postcapillary venules, branching off them, form a unit of the microcirculatory bed of the arm and forearm muscles (module). Well developed intramuscular arterial anastomoses, presence of isolated structural-functional units of the hemomicrocirculatory bed ensure functional prosperity of the human muscles.  相似文献   

15.
In the mouse olfactory epithelium, there are about ten million olfactory sensory neurons, each expressing a single type of odorant receptor out of approximately 1000. Olfactory sensory neurons expressing the same odorant receptor converge their axons to a specific set of glomeruli on the olfactory bulb. How odorant receptors play an instructive role in the projection of axons to the olfactory bulb has been one of the major issues of developmental neurobiology. Recent studies revealed previously overlooked roles of odorant receptor-derived cAMP signals in the axonal projection of olfactory sensory neurons; the levels of cAMP and neuronal activity appear to determine the expression levels of axon guidance/sorting molecules and thereby direct the axonal projection of olfactory sensory neurons. These findings provide new insights as to how peripheral inputs instruct neuronal circuit formation in the mammalian brain.  相似文献   

16.
The expression of the neural adhesion molecules L1 and N-CAM has been studied in the embryonic and early postnatal olfactory system of the mouse in order to gain insight into the function of these molecules during development of a neural structure which retains neuronal turnover capacities throughout adulthood. N-CAM was slightly expressed and L1 was not significantly expressed in the olfactory placode on Embryonic Day 9, the earliest stage tested. Rather, N-CAM was strongly expressed in the mesenchyme underlying the olfactory placode. In the developing nasal pit, L1 and N-CAM were detectable in the developing olfactory epithelium, but not in regions developing into the respiratory epithelium. At early developmental stages, expression of the so-called embryonic form of N-CAM (E-N-CAM) coincides with the expression of N-CAM, whereas at later developmental stages and in the adult it is restricted to a smaller number of sensory cell bodies and axons, suggesting that the less adhesive embryonic form is characteristic of morphogenetically dynamic neuronal structures. Moreover, E-N-CAM is highly expressed at contact sites between olfactory axons and their target cells in the glomeruli of the olfactory bulb. L1 and N-CAM 180, the component of N-CAM that accumulates at cell contacts by interaction with the cytoskeleton are detectable as early as the first axons extend toward the primordial olfactory bulb. L1 remains prominent throughout development on axonal processes, both at contacts with other axons and with ensheathing cells. Contrary to N-CAM 180 which remains detectable on differentiating sensory neuronal cell bodies, L1 is only transiently expressed on these and is no longer detectable on primary olfactory neuronal cell bodies in the adult. Furthermore, whereas throughout development L1 has a molecular form similar to that seen in other parts of the developing and adult central nervous systems, N-CAM and, in particular, N-CAM 180 retain their highly sialylated form at least partially throughout all ages studied. These observations suggest that E-N-CAM and N-CAM 180 are characteristic of developmentally active structures and L1 may not only be involved in neurite outgrowth, but also in stabilization of contacts among fasciculating axons and between axons and ensheathing cells, as it has previously been found in the developing peripheral nervous system.  相似文献   

17.
Anaplastic lymphoma kinase (Alk) has been proposed to regulate neuronal development based on its expression pattern in vertebrates and invertebrates; however, its function in vivo is unknown. We demonstrate that Alk and its ligand Jelly belly (Jeb) play a central role as an anterograde signaling pathway mediating neuronal circuit assembly in the Drosophila visual system. Alk is expressed and required in target neurons in the optic lobe, whereas Jeb is primarily generated by photoreceptor axons and functions in the eye to control target selection of R1-R6 axons in the lamina and R8 axons in the medulla. Impaired Jeb/Alk function affects layer-specific expression of three cell-adhesion molecules, Dumbfounded/Kirre, Roughest/IrreC, and Flamingo, in the medulla. Moreover, loss of flamingo in target neurons causes some R8-axon targeting errors observed in Jeb and Alk mosaic animals. Together, these findings suggest that Jeb/Alk signaling helps R-cell axons to shape their environment for target recognition.  相似文献   

18.
The occurrence and distribution of the vitamin-D-induced calcium-binding protein, calbindin-D28K, has been studied in the brain of a cartilaginous fish using immunohistochemical techniques. A strong immunoreactivity was found in the perikarya, dendrites and axons of neurons located in the nucleus interstitialis commissurae anterioris, the nucleus medialis of the left habenula, the thalamus dorsalis, the thalamus ventralis, the nucleus lobi lateralis, the nucleus interpeduncularis, the lobus vagi and the medial reticular zone. Fibre tracts associated with some of these neuronal groups, such as the fasciculus retroflexus, the stria medullaris and the commissura habenulae, also contained immunopositive fibres. Only a minor immunoreactivity could be detected in other brain areas such as the tectum mesencephali and some telencephalic zones. Interestingly, the cerebellum did not show any immunoreactivity in Purkinje cells nor in other neurons. The distribution of calbindin-D28K in the dogfish brain appears to be mainly related to the viscerosensory centres.  相似文献   

19.
The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.  相似文献   

20.
Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy.Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons.An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号