首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

2.
The increasing use of peptides as pharmaceutical agents, especially in the antiviral and anti-infective therapeutic areas, requires cost-effective production on a large scale. Many peptides need carboxy amidation for full activity or prolonged bioavailability. However, this modification is not possible in prokaryotes and must be done using recombinant enzymes or by expression in transgenic milk. Methods employing recombinant enzymes are appropriate for small-scale production, whereas transgenic milk expression is suitable for making complex disulfide-containing peptides required in large quantity. Here we describe a method for making amidated peptides using a modified self-cleaving vacuolar membrane ATPase (VMA) intein expression system. This system is suitable for making amidated peptides at a laboratory scale using readily available constructs and reagents. Further improvements are possible, such as reducing the size of the intein to improve the peptide yields (the VMA intein comprises 454 amino acids) and, if necessary, secreting the fusion protein to ensure correct N-terminal processing to the peptide. With such developments, this method could form the basis of a large-scale cost-effective system for the bulk production of amidated peptides without the use of recombinant enzymes or the need to cleave fusion proteins.  相似文献   

3.
Leader peptidase cleaves the amino-terminal leader sequences of many secreted and membrane proteins. We have examined the function of leader peptidase by constructing an Escherichia coli strain where its synthesis is controlled by the arabinose B promoter. This strain requires arabinose for growth. When the synthesis of leader peptidase is repressed, protein precursors accumulate, including the precursors of M13 coat protein (an inner membrane protein), maltose binding protein (a periplasmic protein), and OmpA protein (an outer membrane protein). These precursors are translocated across the plasma membrane, as judged by their sensitivity to added proteinase K. However, pro-OmpA and pre-maltose binding protein are retained at the outer surface of the inner membrane. Thus, leader peptides anchor translocated pre-proteins to the outer surface of the plasma membrane and must be removed to allow their subsequent release into the periplasm or transit to the outer membrane.  相似文献   

4.
A membrane-bound fraction of polysomes of Escherichia coli has been isolated after lysis of cells without the use of lysozyme. Protein-synthesis studies in vitro show that membrane-bound and free polysomes are different in the following respects. 1. Membrane-bound polysomes synthesize proteins which are exported from the cell. The products include proteins of the outer membrane and a secreted periplasmic protein, the maltose-binding protein. 2. The major product synthesized by free polysomes is elongation factor Tu, a soluble cytoplasmic protein. 3. The activity of membrane-bound polysomes in vitro is more resistant to puromycin than is the activity of free polysomes. In addition, the mRNA associated with membrane-bound polysomes is more stable than the bulk of cellular mRNA as revealed by studies with rifampicin.  相似文献   

5.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

6.
The large-scale production and isolation of recombinant protein is a central element of the biotechnology industry and many of the products have proved extremely beneficial for therapeutic medicine. Escherichia coli is the microorganism of choice for the expression of heterologous proteins for therapeutic application, and a range of high-value proteins have been targeted to the periplasm using the well characterized Sec protein export pathway. More recently, the ability of the second mainstream protein export system, the twin-arginine translocase, to transport fully-folded proteins into the periplasm of not only E. coli, but also other Gram-negative bacteria, has captured the interest of the biotechnology industry. In this study, we have used a novel approach to block the export of a heterologous Tat substrate in the later stages of the export process, and thereby generate a single-span membrane protein with the soluble domain positioned on the periplasmic side of the inner membrane. Biochemical and immuno-electron microscopy approaches were used to investigate the export of human growth hormone by the twin-arginine translocase, and the generation of a single-span membrane-embedded variant. This is the first time that a bonafide biotechnologically relevant protein has been exported by this machinery and visualized directly in this manner. The data presented here demonstrate a novel method for the production of single-span membrane proteins in E. coli.  相似文献   

7.
The production of correctly folded protein in Escherichia coli is often challenging because of aggregation of the overexpressed protein into inclusion bodies. Although a number of general and protein-specific techniques are available, their effectiveness varies widely. We report a novel method for enhancing the solubility of overexpressed proteins. Presence of a dipeptide, glycylglycine, in the range of 100 mM to 1 M in the medium was found to significantly enhance the solubility (up to 170-fold) of the expressed proteins. The method has been validated using mycobacterial proteins, resulting in improved solubilization, which were otherwise difficult to express as soluble proteins in E. coli. This method can also be used to enhance the solubility of other heterologous recombinant proteins expressed in a bacterial system.  相似文献   

8.
9.
An exported protein of the erythrocytic stages of the malaria parasite, Plasmodium falciparum, has epitope(s) in common with the surface of the sporozoite stage (1). Two cDNA clones encoding this protein, Ag5.1, have now been isolated and expressed in Escherichia coli. The coding sequence contains a region with strong homology to that of the circumsporozoite protein of P. falciparum. Other features of the sequence can be explained in terms of the observed behaviour of the protein in the parasite life cycle. The Ag5.1 can now be synthesised in bacteria in sufficient amounts to analyse the immune response to this protein.  相似文献   

10.
ABSTRACT: BACKGROUND: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. RESULTS: The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. CONCLUSIONS: Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.  相似文献   

11.
Serna L 《The New phytologist》2005,165(3):947-952
* Transgenic plants expressing either green fluorescent protein (GFP)-genomic DNA or GFP-cDNA fusions have been used as powerful tools to define the subcellular localization of many proteins. Because most plant cells are highly vacuolated, the cytosol is confined to a thin layer at the periphery of the cells, making it very difficult to distinguish among cell wall, cell membrane and cytosolic GFP-fusion proteins. * Plasmolysis tests inform about cell-wall localization of GFP-tagged proteins, but they do not discriminate between its cell membrane and/or cytoplasmic localization. By observing the GFP signal in transgenic protoplasts placed at a hypotonic solution, it was possible to distinguish between cell membrane and cytosolic GFP-tagged proteins. * The osmotic disruption of the protoplast vacuole in the hypotonic solution allows the diffusion of the GFP signal from the cell periphery to the central part of the cell volume when the GFP is fused to a soluble protein. By contrast, such diffusion does not occur when the protein under study is attached to the cell membrane. * The present method is easier, faster and cheaper than subcellular fractionating studies and/or immunoelectron microscopy, which have been traditionally used to discern between cell membrane and cytosolic proteins.  相似文献   

12.
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.  相似文献   

13.
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.  相似文献   

14.
In order to clone genes having signal sequences of Escherichia coli, four vectors with or without Lac or Ara promoter were constructed using a leaderless β-lactamase as reporter. Fragments of tetracycline resistance gene (Tet) with or without promoter were used to confirm the vectors’ ability to clone and report signal sequences. The minimum inhibitory concentration of ampicillin of the transformants was measured to detect the expression and secretion efficiency of the vectors. The results showed that the β-lactamase could be co-expressed and secreted with Tet protein. The Lac or Ara promoter in the vectors could be regulated by different inducers, and the Ara promoter showed higher regulative efficiency than the Lac. The best induction dose of l-arabinose for the Ara promoter is 1.25 %. All the four vectors were stably maintained in host after being inoculated for 20 passages in antibiotics-free media. Genomic library of an avian pathogenic strain, E. coli O2, was constructed using the pMB-Ara-T vector we developed. 318 clones were obtained from the genomic library of E. coli strain O2, and the inserts in these clones represented 276 genes based on sequence analysis. Among the 276 cloned fragments, only 128 had complete promoter sequence. For the 128 fragments with promoter, only 27 could be expressed under LB culture condition without inducer, the other 101 were only expressed under induction. The results showed our constructed vectors could efficiently capture all kinds of exported protein genes in vitro, including the ones without promoter or with inactive promoter.  相似文献   

15.
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

16.
17.
A magainin derivative, designated MSI-344, was produced in Escherichia coli as fusion protein, by utilizing a truncated amidophsphoribosyltransferase of E. coli as a fusion partner. Bacterial cells transformed with the gene encoding the fusion protein were grown to a high cell density and induced with isopropyl-1-thio-b-D-galatoside (IPTG) to initiate product expression. The fusion protein was accumulated into cytoplasmic inclusion body and recombinant MSI-344 was released from the fusion partner by hydroxylamine treatment. Following cleavage of the fusion protein with hydroxylamine, the released MSI-344 was purified to homogeneity by cationic exchange chromatography. The final purity was at least 95% by reversed-phase high performance liquid chromatography (RP-HPLC). Purified recombinant MSI-344 was found to be indistinguishable from the synthetic peptide determined by amino acid sequences and antimicrobial activity assay.  相似文献   

18.
We developed a simple method of generating markerless deletions in the Escherichia coli chromosome. The method consists of two recombination events stimulated by lambda Red recombinase. The first recombination replaced a target region with a marker cassette and the second then eliminated the marker cassette. The marker cassette included an antibiotic resistant gene and a negative selection marker (Bacillus subtilis sacB). Since sacB makes E. coli sensitive to sucrose, a markerless deletion strain was successfully selected using its sucrose-resistant phenotype. To stimulate these recombination events, 1-kbp homologous sequences adjacent to the target region were connected to both ends of the marker cassette or connected to each other by PCR. The average efficiency of the recombinations was 24% and 93% respectively. Eliminating the marker cassette with a fragment including an additional sequence, insertion was also possible. This markerless deletion method should be useful in creating a highly modified E. coli chromosome.  相似文献   

19.
20.
Escherichia coli is widely used for recombinant protein production due to its well established genetic manipulation techniques and cost effectiveness of the associated production processes. Soluble expression of heterologous recombinant proteins constitutes a major problem in the deployment of bacterial expression systems. We have developed a dps promoter based expression system in E. coli for improved solubility of expressed proteins. The resulting expression system was found to be superior to the IPTG inducible T7 promoter based pET expression system for production of soluble β-galactosidase, tdTomato, and mCherry. The dps promoter based expression system was shown to be functional in most commonly used strains of E. coli without need for prior genetic manipulation of the host genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号