首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The archaeal flagellum is a unique motility apparatus in the prokaryotic domain, distinct from the bacterial flagellum. Most of the currently recognized archaeal flagella-associated genes fall into a single fla operon that contains the genes for the flagellin proteins (two or more genes designated as flaA or flaB ), some variation of a set of conserved proteins of unknown function ( flaC , flaD , flaE , flaF , flaG and flaH ), an ATPase ( flaI ) and a membrane protein ( flaJ ). In addition, the flaD gene has been demonstrated to encode two proteins: a full-length gene product and a truncated product derived from an alternate, internal start site. A systematic deletion approach was taken using the methanogen Methanococcus maripaludis to investigate the requirement and a possible role for these proposed flagella-associated genes. Markerless in-frame deletion strains were created for most of the genes in the M. maripaludis fla operon. In addition, a strain lacking the truncated FlaD protein [FlaD M(191)I] was also created. DNA sequencing and Southern blot analysis confirmed each mutant strain, and the integrity of the remaining operon was confirmed by immunoblot. With the exception of the ΔFlaB3 and FlaD M(191)I strains, all mutants were non-motile by light microscopy and non-flagellated by electron microscopy. A detailed examination of the ΔFlaB3 mutant flagella revealed that these structures had no hook region, while the FlaD M(191)I strain appeared identical to wild type. Each deletion strain was complemented, and motility and flagellation was restored. Collectively, these results demonstrate for first time that these fla operon genes are directly involved and critically required for proper archaeal flagella assembly and function.  相似文献   

3.
Summary We have examined Escherichia coli K12 flagellar mutants affected in each of 29 different loci for the synthesis of flagellin and hook subunit protein. Immune precipitation experiments were employed by treating cell extracts with antiserum against each protein. Flagellin was synthesized in mutants defective in genes flaS, flaT, flaU and flbC. The flaE and flaZ mutants produced small amounts of flagellin, while all the other mutants failed to produce any detectable amount of flagellin.Hook subunit protein was found in most mutants including those defective in genes flaA, flaB, flaC, flaD, flaE, flaG, flaH, flaL, flaM, flaN, flaO, flaP, flaQ, flaR, flaS, flaT, flaU, flaV, flaW, flaX, flaY, flaZ, flbA, flbC, flbD, and hag but not in mutants of flaK, flaI, and flbB. The results conform to the predictions made by our previous indirect gene fusion study (Komeda 1982).  相似文献   

4.
Three mutants with an autolysin-deficient and flagellaless phenotype (lyt) were genetically analyzed and compared with three thermosensitive flagellaless mutants. In view of the near indistinguishability of their phenotypes, all six mutations were assigned to fla loci. They were distributed into four linkage groups, designated flaA through flaD. flaA and flaB map between pyrD and thyA, flaD maps between aroD and lys, and, in agreement with a previous report, flaC maps near hisA. A locus associated with hypermotility, ifm-3, maps near the latter marker. Introduction of ifm-3 into lyt-1- and flaA4-containing strains led to partial suppression of the nonmotile phenotype. We discuss the possibility that the cellular concentration of autolysins is regulated by the expression of fla genes. Discrepancies with respect to previous mapping of flaA and flaB are accounted for.  相似文献   

5.
M Tsuda  T Iino 《Journal of bacteriology》1983,153(2):1018-1026
Complementation in bacteriophage E79 tv-l-mediated transduction and the phenotypic properties of the flagellar genes in Pseudomonas aeruginosa PAO were investigated by using 195 flagellar mutants of this organism. A total of 15 fla. 1 mot, and 2 che cistrons were identified. At least 5 fla cistrons (fla V to flaZ) and one mot cistron resided in one region, and at least 10 fla cistrons (flaA to flaJ) and two che cistrons (cheA and cheB) resided in another. The flaC mutants exhibited cistron-specific leakiness on motility agar plates. The flaE cistron may be the structural gene for the component protein of the flagellar filament. The cheA mutations, which resulted in pleiotropic phenotypes for flagellar formation, motility, and taxis, belonged to the same complementation group as the flaF mutations; that is, we inferred that cheA and flaF are synonymous.  相似文献   

6.
Two classes of region III flagellar genes in Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
We infected various nonflagellated mutants of Escherichia coli with fla-transducing phages and followed the kinetics of the appearance of motility. Our analysis revealed two distinct classes of region III fla genes. Class II fla genes (hag, flaD) functioned 15 min later than class I fla genes (flaN, flaB, flaC, flaO, flaA, flbD, flaQ, flaP) in flagellar morphogenesis. We suggest that the two classes of fla genes are involved in two different stages, initiation (class I) and completion (class II), of flagellar formation.  相似文献   

7.
8.
The production of hook protein and flagellin in 29 Fla- mutants of Escherichia coli K-12 was determined by the complement fixation assay. Six mutants produced hook protein, and four of them also produced flagellin. A flaE mutation was introduced into these fla mutants carrying the hook structure. All of these mutants made polyhooks and were used as hosts for a newly isolated host-range mutant of chi phage that has a high affinity for the hook structure. All except one mutant produced significant amounts of progeny phages. A flaD flaE double mutant was that exception which did not yield significant amounts of progeny by the phage propagation method. All of the flaE double mutants produced comparable amounts of polyhooks, and no qualitative difference was detected between chi-sensitive and chi-insensitive mutants by the complement fixation assay. Accordingly, it was thought that the polyhook of the flaD flaE mutant had a mechanical defect for chi phage infection. This assumption was confirmed by tethered-cell experiments; the flaD flaE mutant did not rotate. These results are well explained by a proposed regulation pathway of flagellar genes. flaE mutants can express other genes which govern the final step of the flagellar morphogenesis, whereas flaD mutants cannot rotate, possibly because the mocha operon is not expressed. The results obtained in E. coli were also found to be applicable to Salmonella typhimurium.  相似文献   

9.
10.
11.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

12.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

13.
Genetic analysis of the flaA locus of Bacillus subtilis.   总被引:2,自引:1,他引:1       下载免费PDF全文
We isolated two clones of recombinant lambda bacteriophage with overlapping inserts of Bacillus subtilis chromosomal DNA corresponding to part of the flaA locus. The flaA4 and flaA15 mutations were localized on the physical map by marker rescue experiments. The flaA locus and the flaB (sigD) gene were mapped in transduction crosses, and the order glnA polC flaB flaA was determined. FlaB was linked to polC in transformation crosses.  相似文献   

14.
15.
16.
A genetic characterization of eight virulence factor genes, elastase, lipase, polar flagella (flaA/flaB, flaG), lateral flagella (lafA), and the enterotoxins alt, act, and ast, was performed using polymerase chain reaction with 55 drinking water and nine clinical isolates. When 16 Aeromonas hydrophila strains, seven Aeromonas veronii strains, and seven Aeromonas caviae strains exhibiting different combinations of virulence factor genes were tested in immunocompromised mice by intraperitoneal injection, only those strains that had one or more of the enterotoxins flaA, flaB, and either flaG or lafA showed signs of being virulent. The correlation was seen in 97% (29/30) of the strains, which included strains from drinking water. Thus, Aeromonas water isolates have the potential to be pathogenic in immunocompromised hosts.  相似文献   

17.

Background

Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.

Results

R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in flaD and flaG were not significantly affected while flaE and flaH mutants exhibited shortened filaments and reduced swimming motility.

Conclusion

The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for R. leguminosarum strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.  相似文献   

18.
Summary Genetic studies have shown the presence of more than 20 fla genes indispensable for the formation of flagella in Salmonella typhimurium and Escherichia coli. Functional homology of the fla genes in these two bacterial species was examined through intergeneric complementation tests by bacteriophage Pl-mediated transduction from E. coli donors to S. typhimurium recipients. It was found that most of the fla gene products in these two bacterial species were interchangeable and the following correspondence was established (S. typhimurium genes vs. E. coli genes): flaFIV to flaV; flaFV to flaK; flaFVII to flaL; flaFIX to flaM; flaC to flaH; flaM to flaG; flaE to flaI; flaAI to flaN; flaAII·1 to flaB; flaAIII to flaC; flaS to flaO; flaR to flaE; flaQ to flaA; and flaB to flaR. These results suggest that the chromosomal alignment of the functionally homologous genes is very similar in these two bacterial species. Furthermore, five additional fla genes were inferred to exist in E. coli in addition to the fla genes already identified. They were termed flaU, flaX, flaY, flaZ, and flbB (flb is equivalent to fla), which corresponded to flaFI, flaFVI, flaFVIII, flaFX, and flaK of Salmonella in this order. The flaK mutants of E. coli showed no complementation with any of the flaFV, flaFVI, flaFVII, flaFVIII, or flaFIX mutants of Salmonella.  相似文献   

19.
A general method is presented for the direct selection of transductional clones of Salmonella containing suppressor mutations. The supD locus is about 40% cotransducible with the closest fla markers examined. The probable map order is: supD501-(flaD42-flaB36)-(flaA41-flaA37).  相似文献   

20.
Spirochete periplasmic flagella (PFs), including those from Brachyspira (Serpulina), Spirochaeta, Treponema, and Leptospira spp., have a unique structure. In most spirochete species, the periplasmic flagellar filaments consist of a core of at least three proteins (FlaB1, FlaB2, and FlaB3) and a sheath protein (FlaA). Each of these proteins is encoded by a separate gene. Using Brachyspira hyodysenteriae as a model system for analyzing PF function by allelic exchange mutagenesis, we analyzed purified PFs from previously constructed flaA::cat, flaA::kan, and flaB1::kan mutants and newly constructed flaB2::cat and flaB3::cat mutants. We investigated whether any of these mutants had a loss of motility and altered PF structure. As formerly found with flaA::cat, flaA::kan, and flaB1::kan mutants, flaB2::cat and flaB3::cat mutants were still motile, but all were less motile than the wild-type strain, using a swarm-plate assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis indicated that each mutation resulted in the specific loss of the cognate gene product in the assembled purified PFs. Consistent with these results, Northern blot analysis indicated that each flagellar filament gene was monocistronic. In contrast to previous results that analyzed PFs attached to disrupted cells, purified PFs from a flaA::cat mutant were significantly thinner (19.6 nm) than those of the wild-type strain and flaB1::kan, flaB2::cat, and flaB3::cat mutants (24 to 25 nm). These results provide supportive genetic evidence that FlaA forms a sheath around the FlaB core. Using high-magnification dark-field microscopy, we also found that flaA::cat and flaA::kan mutants produced PFs with a smaller helix pitch and helix diameter compared to the wild-type strain and flaB mutants. These results indicate that the interaction of FlaA with the FlaB core impacts periplasmic flagellar helical morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号