首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
The biological activity of a series of cyclopropyl analogs of all-trans- and 13-cis-retinoic acid has been evaluated in the vaginal smear assay carried out in vitamin A-deficient rats. These analogs were designed to probe the role of the 13-cis isomer in the actions of the parent all-trans-retinoic acid by blocking the interconversion of these two compounds. Although relatively less active, the potency of some of the cyclopropyl analogs suggests that 13-cis-retinoic acid is a fully active metabolite of all-trans-retinoic acid. Since 13-cis-retinoic acid represents a small percentage of the retinoic acid metabolites, the physiological significance of this activity is still unclear. Possible reasons for the reduced activity of the cyclopropyl analogs, as well as an aromatic analog of retinoic acid, are discussed.  相似文献   

2.
The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [3H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. Our data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin.  相似文献   

3.
Vitamin A-deficient rats were given a single intrajugular injection of 1 mg all-trans-[11-3H]retinoic acid and 3 h later the rats were killed. The small intestines were extracted and chromatographed by high-performance liquid chromatography to yield distinct metabolites. These were quantitated using the assumption that the specific activity of the metabolite is equal to that of the parent [3H]retinoic acid. The biological activity of all discernible metabolities was determined in the vitamin A-deficient female rat by vaginal smear assay. Retinoic acid and retinoyl-β-glucuronide from the preparation had equal activity while no activity was found for any of the other metabolite fractions. Thus, no evidence for an unknown metabolite having potent epithelial differentiating activity could be found in this target tissue of vitamin A action.  相似文献   

4.
The liver and intestinal metabolites of orally dosed 13-cis-[11-3H]retinoic acid were analyzed in normal and 13-cis-retinoic acid treated rats 3 h after administration of the radiolabeled retinoid. all-trans-Retinoic acid was identified as a liver and intestinal mucosa metabolite in normal rats given physiological doses of 13-cis-[3H]retinoic acid. all-trans-Retinoyl glucuronide was identified as the most abundant radiolabeled metabolite in mucosa and a prominent liver metabolite under the same conditions. Thus, the major 13-cis-retinoic acid metabolites retained in liver and mucosa, two retinoid target tissues, had the all-trans configuration. These data indicate that the isomerization of 13-cis-retinoic acid to all-trans-retinoic acid and the subsequent conversion to all-trans-retinoyl glucuronide are central events in the in vivo metabolism of 13-cis-retinoic acid in the rat. Moreover, the all-trans-retinoic acid detected in vivo could account for a significant fraction of the physiological activity of 13-cis-retinoic acid. The tissue disposition and metabolism of orally dosed 13-cis-[3H]retinoic acid are modulated by retinoid treatment. Chronic 13-cis-retinoic acid treatment apparently increased the intestinal accumulation of all-trans-retinoic acid, all-trans-retinoyl glucuronide, and 13-cis-retinoyl glucuronide. The liver concentrations of tritiated all-trans-retinoic acid and all-trans-retinoyl glucuronide were also elevated in 13-cis-retinoic acid treated rats.  相似文献   

5.
Biliary metabolites from physiological doses of all-trans-[10-3H]retinoic acid were examined in normal and vitamin A-deficient rats. The bile from normal and vitamin A-deficient rats contained approximately 60% of the administered dose following a 24-h collection period. However, vitamin A-deficient rats show a 6-h delay in the excretion of radioactivity compared to normal rats. Retinoyl-beta-glucuronide excretion was particularly sensitive to the vitamin A status of the rats. In normal rats, retinoyl-beta-glucuronide reached a maximum concentration of 235 pmol/ml of bile 2 h following the dose and then rapidly declined. Vitamin A-deficient rats show a relatively constant concentration of this metabolite (100-150 pmol/ml of bile) over a 10-h collection period. Retinoic acid excretion was low in both normal and deficient rats. The concentration of retinotaurine, a recently identified biliary metabolite, was approximately equal to retinoyl-beta-glucuronide in normal rats and appeared in the bile 2 h later than the glucuronide.  相似文献   

6.
A study was conducted to explore the relationship between the effects of vitamin A upon cartilage and the biological role of vitamin A in maintaining growth and life. Retinol, retinoic acid, alpha-retinoic acid, and ROB-7699 (a cyclopentyl analog of retinoic acid) were highly effective in promoting the lysis of the extracellular matrix of cartilage grown in organ culture in vitro. Retinoic acid and its two analogs were quantitatively more active than was retinol in bringing about lysis of matrix and release of proteoglycan into the culture medium. A bioassay was then conducted to determine the ability of each compound to promote growth of vitamin A-deficient rats. In contrast to their effects upon cartilage, retinoic acid and its two analogs were considerably less active quantitatively than retinol in promoting growth of vitamin A-deficient rats. Moreover, the three acids tested showed graded biological activity in the growth bioassay, with alpha-retinoic acid showing reduced bioactivity (approx. one-fourth that of retinoic acid) and ROB-7699 being virtually inactive. The lysis of cartilage produced by these compounds was presumably caused by release of lysosomal enzymes as a result of the membrane-labilizing effects of the compounds. Thus, these membrane effects of the vitamin A-related compounds are poorly correlated with their biological growth-promoting activity. The alpha-ionone analogs of retinol and retinoic acid were able to maintain good health and growth of vitamin A-deficient rats, although their quantitative activity was low. Rats fed alpha-retinyl acetate showed high liver stores of alpha-retinyl esters and low levels of serum retinol-binding protein (similar to the levels seen in retinoic acid-fed rats). The biological activity of the alpha-ionone analogs was apparently not due to contamination with or conversion to the normal beta-ionone compounds.  相似文献   

7.
1. Four major radioactive fractions have been isolated from the livers of vitamin A-deficient rats given [6,7-(14)C(2)]retinoic acid. 2. At least one of these was more potent than retinoic acid and approximately equal to retinol in the growth assay for vitamin A activity. 3. The biologically active material was chromatographically distinct from retinoic acid, retinol and retinal. 4. Alkaline hydrolysis of this material yielded an acidic compound containing all the radioactivity. 5. The methyl ester of the acidic product was unlike the methyl ester of retinoic acid in its chromatographic behaviour. 6. It is suggested that this metabolite may represent the active form of retinol in its growth-supporting role.  相似文献   

8.
The in vitro metabolism of all-trans-[11,12-3h]retinoic acid to several more polar compounds has been demonstrated in a hamster tracheal organ culture system. The production of these metabolites is dependent on the presence of tissue. The physiological significance of these compounds is shown by the cochromatography of several of the in vitro formed metabolites synthesized from [carboxy-14C]retinoic acid with metabolites isolated from the intestine and urine of hamsters previously injected with 0.1 to 1.5 microgram of [3H]retinoic acid. One of the metabolites shows about one-tenth the biological activity of all-trans-retinoic acid when tested in a hamster tracheal organ culture assay. This biologically active metabolite is converted by the hamster trachea in vitro to a biologically inactive metabolite.  相似文献   

9.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

10.
Polar metabolites of retinoic acid accumulate in the intestine of vitamin A-deficient rats 3 h after administration of 450 μg of [11,12-3H]retinoic acid. Using new Chromatographic procedures developed for the purification of vitamin A metabolites, a major polar derivative of retinoic acid was isolated from intestine in pure form as its methyl ester and positively identified as 5,8-oxyretinoic acid.  相似文献   

11.
Because only retinol and not all-trans-retinoic acid (atRA) can satisfy all of the functions of vitamin A, we have investigated the retinol metabolites in tissues of vitamin A-deficient (VAD) rats responding to a radioactive dose of [20-(3)H]all-trans-retinol. As expected, atRA is the major vitamin A metabolite present in the target tissues of VAD rats given a physiological dose (1 microg) of [20-(3)H]all-trans-retinol (atROL). Both atROL and atRA were detected by high-performance liquid chromatographic (HPLC) analysis of the radioactivity extracted from the liver, kidney, small intestine, lung, spleen, bone, skin, or testis of these animals. Novel retinol metabolites were observed in the aqueous extracts from the testis, lung, and skin. However, these metabolites were detected in very small amounts and were not characterized further. Importantly, neither 9-cis-retinoic acid (9cRA), 9-cis-retinol (9cROL), nor 13-cis-retinoic acid (13cRA) was present in detectable amounts. The amounts of atRA varied in each tissue, ranging from 0.29 +/- 0.05 fmol of RA/g of tissue in the femurs to 12.9 +/- 4.3 fmol of RA/g of tissue in the kidneys. The absence of 9cRA in vivo was not due to degradation of this retinoid during the extraction procedure or HPLC analysis of the extracted radioactivity. As atROL completely fulfills all of the physiological roles of vitamin A, and 9cRA is not detected in any of the tissues analyzed, these results suggest that 9cRA may have no physiological relevance in the rat.  相似文献   

12.
Metabolism of retinoic acid in vivo in the vitamin A-deficient rat.   总被引:3,自引:1,他引:2       下载免费PDF全文
Sample preparation and high-pressure liquid-chromatography separation methods useful for the study of retinoic acid metabolism are reported. The sample preparation procedure does not cause significant degradation of retinoic acid, and the gradient high-pressure liquid-chromatography separation method gives excellent separation of the major metabolites of retinoic acid. These methods were used to examine the metabolites of retinoic acid in blood, trachea and lung, testes, kidneys and small intestine of vitamin A-deficient rats dosed subcutaneously with 2 micrograms of [11,12-3H] retinoic acid. At 6h after dosing, a total of eight metabolites of retinoic acid produced in vivo were found in the tissues examined. Of these, four were found in most of the epithelial tissues examined, and therefore may be of interest as possible active metabolites in the epithelial functions of vitamin A.  相似文献   

13.
Analysis of mouse retinal dehydrogenase type 2 promoter and expression   总被引:1,自引:0,他引:1  
Wang X  Sperkova Z  Napoli JL 《Genomics》2001,74(2):245-250
  相似文献   

14.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

15.
Two synthetic retinoids were examined for their ability to support growth in male vitamin A-deficient rats. One of the compounds, (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1 -propenyl]-benzoic acid (TTNPB), was found to be highly effective; it was 35-fold more active than all-trans-retinoic acid. Thus, the in vivo results were in agreement with the in vitro activity of this compound published by previous investigators, and support the view that this compound may be useful in determining the molecular mechanism of action of the retinoids. Another analog, 4,4-difluororetinoic acid, was only 12% as effective as retinoic acid. However, the possible instability of this compound and the electronegativity of the fluoro groups prohibited conclusions concerning the biological function of metabolic modification on the 4 position of retinoic acid.  相似文献   

16.
17.
The plasma transport and metabolism of retinoic acid in the rat   总被引:9,自引:4,他引:5       下载免费PDF全文
The transport of retinoic acid in plasma was examined in vitamin A-deficient rats maintained on small doses of radioactively labelled retinoic acid. After ultracentrifugation of serum adjusted to density 1.21, most of the radioactivity (83%) was associated with the proteins of density greater than 1.21, and not with the serum lipoproteins. Gel filtration of the labelled serum on Sephadex G-200 showed that the radioactive label was associated with protein in the molecular-weight range of serum albumin. On polyacrylamide-gel electrophoresis almost all of the recovered radioactivity migrated with serum albumin. Similar esults were obtained with serum from a normal control rat given a single oral dose of [(14)C]retinoic acid. These findings indicate that retinoic acid is transported in rat serum bound to serum albumin, and not by retinol-binding protein (the specific transport protein for plasma retinol). Several tissues and the entire remaining carcase of each rat were extracted with ethanol-acetone to determine the tissue distribution of retinoic acid and some of its metabolites. The total recover of radioactive compounds in in the entire body of the rat was about 7-9mug, representing less than 5% or 10% respectively of the total administered label in the two dosage groups studied. The results confirm that retinoic acid is not stored in any tissue. Most of the radioactive material was found in the carcase, rather than in the specific tissues analysed. Two-thirds of the radioactivity in the carcase appeared to represent unchanged retinoic acid. Of the tissues examined, the liver, kidneys and intestine had relatively high concentrations of radioactive compounds, whereas the testes and fat-pads had the lowest concentrations.  相似文献   

18.
Female rats fed on a vitamin A-deficient diet from weaning were oophorectomized after introitus and used to test analogues of all-trans-retinoic acid for epithelial differentiation activity by the vaginal-smear assay. Several modifications have been made in the assay; housing facilities were modified, the diet changed and the existing scoring system for the assay altered. The arotinoid (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1 -propenyl] benzoic acid was 12-fold more active than all-trans-retinoic acid, which had a 50% effective dose (ED50) of 80 pmol/vagina. The fluorinated analogue 4,4-difluororetinoic acid had an ED50 of 2.5 nmol/vagina and was therefore 30-fold less active than all-trans-retinoic acid.  相似文献   

19.
Vitamin A is essential for lung development and pulmonary cell differentiation and its deficiency results in alterations of lung structure and function. Basement membranes (BMs) are also involved in those processes, and retinoic acid, the main biologically active form of vitamin A, influences the expression of extracellular matrix macromolecules. Therefore, we have analyzed the ultrastructure and collagen content of lung alveolar BM in growing rats deficient in vitamin A and the recovering effect of all-trans retinoic acid. Male weanling pups were fed a retinol-adequate or -deficient diet until they were 60 days old. A group of vitamin A-deficient pups were recovered by daily intraperitoneal injections of all-trans retinoic acid for 10 days. Alveolar BM in vitamin A-deficient rats doubled its thickness and contained irregularly scattered collagen fibrils. Immunocytochemistry revealed that these fibrils were composed of collagen I. Total content of both collagen I protein and its mRNA was greater in vitamin-deficient lungs. In agreement with the greater size of the BM the amount of collagen IV was also increased. Proinflammatory cytokines, IL-1α, IL-1β and TNF-α, did not change, but myeloperoxidase and TGF-β1 were increased. Treatment of vitamin A-deficient rats with retinoic acid reversed all the alterations, but the BM thickness recovered only partially. Retinoic acid recovering activity occurred in the presence of increasing oxidative stress. In conclusion, vitamin A deficiency results in alterations of the structure and composition of the alveolar BM which are probably mediated by TGF-β1 and reverted by retinoic acid. These alterations could contribute to the impairment of lung function and predispose to pulmonary disease.  相似文献   

20.
1. Rats raised on a vitamin A-deficient diet supplemented with either retinyl acetate or retinoic acid were mated and became pregnant. 2. The rates of secretion of progesterone, 20alpha-hydroxypregn-4-en-3-one, oestradiol-17beta and oestrone into the ovarian-venous blood of rats in these two groups were measured on days 9 and 15 of pregnancy. 3. Rates of secretion of progesterone and 20alpha-hydroxypregn-4-en-3-one, both on days 9 and 15, were lower for the rats given retinoic acid. No such differences were found in ovarian oestrogen secretion. 4. The implications of these results are discussed in the light of the previous demonstration that the activity of ovarian 3beta-hydroxy-Delta(5)-steroid dehydrogenase was markedly less in pregnant rats given retinoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号