首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2’3’-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.  相似文献   

2.
3.
The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase (cGAS) has emerged as a fundamental component fueling the anti-pathogen immunity. Because of its pivotal role in initiating innate immune response, the activity of cGAS must be tightly fine-tuned to maintain immune homeostasis in antiviral response. Here, we reported that neddylation modification was indispensable for appropriate cGAS-STING signaling activation. Blocking neddylation pathway using neddylation inhibitor MLN4924 substantially impaired the induction of type I interferon and proinflammatory cytokines, which was selectively dependent on Nedd8 E2 enzyme Ube2m. We further found that deficiency of the Nedd8 E3 ligase Rnf111 greatly attenuated DNA-triggered cGAS activation while not affecting cGAMP induced activation of STING, demonstrating that Rnf111 was the Nedd8 E3 ligase of cGAS. By performing mass spectrometry, we identified Lys231 and Lys421 as essential neddylation sites in human cGAS. Mechanistically, Rnf111 interacted with and polyneddylated cGAS, which in turn promoted its dimerization and enhanced the DNA-binding ability, leading to proper cGAS-STING pathway activation. In the same line, the Ube2m or Rnf111 deficiency mice exhibited severe defects in innate immune response and were susceptible to HSV-1 infection. Collectively, our study uncovered a vital role of the Ube2m-Rnf111 neddylation axis in promoting the activity of the cGAS-STING pathway and highlighted the importance of neddylation modification in antiviral defense.  相似文献   

4.
Infection with Listeria monocytogenes strains that enter the host cell cytosol leads to a robust cytotoxic T cell response resulting in long-lived cell-mediated immunity (CMI). Upon entry into the cytosol, L. monocytogenes secretes cyclic diadenosine monophosphate (c-di-AMP) which activates the innate immune sensor STING leading to the expression of IFN-β and co-regulated genes. In this study, we examined the role of STING in the development of protective CMI to L. monocytogenes. Mice deficient for STING or its downstream effector IRF3 restricted a secondary lethal challenge with L. monocytogenes and exhibited enhanced immunity that was MyD88-independent. Conversely, enhancing STING activation during immunization by co-administration of c-di-AMP or by infection with a L. monocytogenes mutant that secretes elevated levels of c-di-AMP resulted in decreased protective immunity that was largely dependent on the type I interferon receptor. These data suggest that L. monocytogenes activation of STING downregulates CMI by induction of type I interferon.  相似文献   

5.
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.  相似文献   

6.
IL-18 is among the cytokines responsible for immune-mediated pathologies and is probably one of the factors that contribute to the pathogenesis of autoimmune diseases. Identification of the causes of uncontrolled IL-18 production and activity in autoimmunity would allow for novel therapeutic targets to effectively block autoimmune activation and inhibit concomitant tissue damage. IL-18 is produced mainly by monocytes/macrophages in response to stimuli of viral/bacterial origin, its production being therefore one of the effects of innate immunity initiated by host-pathogen interaction. In this review, we summarise the evidence supporting both the effector and the pathogenic role of IL-18 in autoimmunity, and propose that the disturbed mechanism of innate immunity, resulting from macrophage activation through innate immunity receptors (TLR/IL-1R family), may be the basis of pathologically high levels of IL-18 production and activation. Unravelling the mechanisms of IL-18 production and activity in autoimmune diseases will allow the identification of targets for more effective therapeutic intervention.  相似文献   

7.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

8.
周萍萍  王涛  孙元  仇华吉 《微生物学报》2021,61(7):1882-1895
免疫系统识别病原微生物的主要机制之一是识别其核酸。环磷酸鸟苷-腺苷合成酶(cGAS)是一种胞质DNA感受器,感知病原DNA后激活cGAS-STING通路。该通路不仅介导天然免疫应答以抵抗多种含DNA的病原微生物感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答。然而,自体DNA对cGAS-STING通路的异常激活也会导致自身免疫性和炎症性疾病。本文综述了cGAS-STING信号通路及其在抗病毒天然免疫中的调控作用与功能,阐述了cGAS-STING通路在抗病毒感染和疾病中发挥的作用。  相似文献   

9.
Recent studies have illustrated the functional significance of DNA recognition in the activation of innate immune responses among a variety of diseases. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has been found to be modulated by post-translational modifications and can regulate the immune response via type I IFNs. Accumulating evidence indicates a pivotal role of cGAS-STING signaling, being protective or pathogenic, in the development of diseases. Thus, a comprehensive understanding of the post-translational modifications of cGAS-STING pathway and their role in disease development will provide insights in predicting individual disease outcomes and developing appropriate therapies. In this review, we will discuss the regulation of the cGAS-STING pathway and its implications in disease pathologies, as well as pharmacologic strategies to target the cGAS-STING pathway for therapeutic intervention.  相似文献   

10.
Following the detection of cytosolic double-stranded DNA from viral or bacterial infection in mammalian cells, cyclic dinucleotide activation of STING induces interferon β expression to initiate innate immune defenses. STING activation also induces LC3B lipidation, a classical but equivocal marker of autophagy, that promotes a cell-autonomous antiviral response that arose before evolution of the interferon pathway. We report that STING activation induces LC3B lipidation onto single-membrane perinuclear vesicles mediated by ATG16L1 via its WD40 domain, bypassing the requirement of canonical upstream autophagy machinery. This process is blocked by bafilomycin A1 that binds and inhibits the vacuolar ATPase (V-ATPase) and by SopF, a bacterial effector that catalytically modifies the V-ATPase to inhibit LC3B lipidation via ATG16L1. These results indicate that activation of the cGAS-STING pathway induces V-ATPase–dependent LC3B lipidation that may mediate cell-autonomous host defense, an unanticipated mechanism that is distinct from LC3B lipidation onto double-membrane autophagosomes.  相似文献   

11.
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.  相似文献   

12.
13.
SOCS proteins, cytokine signalling and immune regulation   总被引:1,自引:0,他引:1  
Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.  相似文献   

14.
The innate immune system has a key role in the mammalian immune response. Recent research has demonstrated that mitochondria participate in a broad range of innate immune pathways, functioning as signalling platforms and contributing to effector responses. In addition to regulating antiviral signalling, mounting evidence suggests that mitochondria facilitate antibacterial immunity by generating reactive oxygen species and contribute to innate immune activation following cellular damage and stress. Therefore, in addition to their well-appreciated roles in cellular metabolism and programmed cell death, mitochondria appear to function as centrally positioned hubs in the innate immune system. Here, we review the emerging knowledge about the roles of mitochondria in innate immunity.  相似文献   

15.
16.
Dectin-1 is a natural killer (NK)-cell-receptor-like C-type lectin that is thought to be involved in innate immune responses to fungal pathogens. This transmembrane signalling receptor mediates various cellular functions, from fungal binding, uptake and killing, to inducing the production of cytokines and chemokines. These activities could influence the resultant immune response and can, in certain circumstances, lead to autoimmunity and disease. As I discuss here, understanding the molecular mechanisms behind these functions has revealed new concepts, including collaborative signalling with the Toll-like receptors (TLRs) and the use of spleen tyrosine kinase (SYK), that have implications for the role of other non-TLR pattern-recognition receptors in immunity.  相似文献   

17.
Both viral infection and DNA transfection expose single-stranded or double-stranded DNA to the cytoplasm of mammalian cells. Recognition of cytosolic DNA activates a series of cellular responses, including induction of pro-inflammatory genes such as type I interferon through the well-known cGAS-STING pathway. Here we show for the first time that intracellular administration of either single or double stranded interferon stimulating DNA (ISD), but not poly(dA) suppresses cell growth in many different cell types. Suppression of cell growth by cytosolic DNA is cGAS/STING independent and associated with inhibition of glucose metabolism, ATP depletion and subsequent cellular energy stress responses including activation of AMPK and inactivation of mTORC1. Our results suggest that in concert with but independent of innate immune response, recognition of cytosolic DNA induced cellular energy stress potentially functions as a metabolic barrier to viral replication.  相似文献   

18.
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.Subject terms: Pattern recognition receptors, Immunosurveillance  相似文献   

19.
Over the past decade it has become clear that lactobacilli and other probiotic and commensal organisms can interact with mucosal immune cells or epithelial cells lining the mucosa to modulate specific functions of the mucosal immune system. The most well understood signalling mechanisms involve the innate pattern recognition receptors such as Toll-like receptors, nucleotide oligomerization domain-like receptors and C-type lectin receptors. Binding of microbe-associated molecular patterns with these receptors can activate antigen presenting cells and modulate their function through the expression of surface receptors, secreted cytokines and chemokines. In vitro the cytokine response of human peripheral blood mononuclear cells and dendritic cells to lactobacilli can be strikingly different depending on both the bacterial species and the strain. Several factors have been identified in lactobacilli that influence the immune response in vitro and in vivo including cell surface carbohydrates, enzymes modifying the structure of lipoteichoic acids and metabolites. In mice mechanistic studies point to a role for the homeostatic control of inducible T regulatory cells in the mucosal tissues as one possible immunomodulatory mechanism. Increasing evidence also suggests that induction of epithelial signalling by intestinal lactobacilli can modulate barrier functions, defensin production and regulate inflammatory signalling. Other probiotic mechanisms include modulation of the T cell effector subsets, enhancement of humoral immunity and interactions with the epithelial-associated dendritic cells and macrophages. A major challenge for the future will be to gain more knowledge about the interactions occurring between lactobacilli and the host in vivo and to understand the molecular basis of innate signalling in response to whole bacteria which trigger multiple signalling pathways.  相似文献   

20.
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2′,5′)pA and A(3′,5′)pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号